Properties

Label 5184.o
Number of curves $4$
Conductor $5184$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5184.o have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 - 6 T + 23 T^{2}\) 1.23.ag
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5184.o do not have complex multiplication.

Modular form 5184.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{7} - 3 q^{11} - 2 q^{13} - 3 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 21 & 7 \\ 3 & 1 & 7 & 21 \\ 21 & 7 & 1 & 3 \\ 7 & 21 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 5184.o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5184.o1 5184u4 \([0, 0, 0, -620460, 188113104]\) \(-189613868625/128\) \(-17832200896512\) \([]\) \(24192\) \(1.8584\)  
5184.o2 5184u3 \([0, 0, 0, -6060, 368848]\) \(-1159088625/2097152\) \(-44530220924928\) \([]\) \(8064\) \(1.3091\)  
5184.o3 5184u1 \([0, 0, 0, -300, -2096]\) \(-140625/8\) \(-169869312\) \([]\) \(1152\) \(0.33613\) \(\Gamma_0(N)\)-optimal
5184.o4 5184u2 \([0, 0, 0, 1620, -3888]\) \(3375/2\) \(-278628139008\) \([]\) \(3456\) \(0.88544\)