Properties

Label 5175.e
Number of curves $1$
Conductor $5175$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("e1")
 
E.isogeny_class()
 

Elliptic curves in class 5175.e

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5175.e1 5175l1 \([1, -1, 1, -20, -8]\) \(46305/23\) \(419175\) \([]\) \(384\) \(-0.22819\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 5175.e1 has rank \(1\).

Complex multiplication

The elliptic curves in class 5175.e do not have complex multiplication.

Modular form 5175.2.a.e

sage: E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - q^{7} + 3 q^{8} + q^{11} - q^{13} + q^{14} - q^{16} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display