Show commands for:
SageMath
sage: E = EllipticCurve("bx1")
sage: E.isogeny_class()
Elliptic curves in class 51600bx
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
51600.d2 | 51600bx1 | [0, -1, 0, -4102408, 3317827312] | [2] | 2903040 | \(\Gamma_0(N)\)-optimal |
51600.d1 | 51600bx2 | [0, -1, 0, -66310408, 207857731312] | [2] | 5806080 |
Rank
sage: E.rank()
The elliptic curves in class 51600bx have rank \(0\).
Complex multiplication
The elliptic curves in class 51600bx do not have complex multiplication.Modular form 51600.2.a.bx
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.