Show commands for:
SageMath
sage: E = EllipticCurve("dv1")
sage: E.isogeny_class()
Elliptic curves in class 51600.dv
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
51600.dv1 | 51600cx4 | [0, 1, 0, -335408, -74368812] | [2] | 442368 | |
51600.dv2 | 51600cx2 | [0, 1, 0, -35408, 631188] | [2, 2] | 221184 | |
51600.dv3 | 51600cx1 | [0, 1, 0, -27408, 1735188] | [2] | 110592 | \(\Gamma_0(N)\)-optimal |
51600.dv4 | 51600cx3 | [0, 1, 0, 136592, 5103188] | [2] | 442368 |
Rank
sage: E.rank()
The elliptic curves in class 51600.dv have rank \(1\).
Complex multiplication
The elliptic curves in class 51600.dv do not have complex multiplication.Modular form 51600.2.a.dv
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.