Properties

Label 51600.bj
Number of curves $2$
Conductor $51600$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands for: SageMath
sage: E = EllipticCurve("bj1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 51600.bj

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
51600.bj1 51600bs2 \([0, -1, 0, -534408, -150188688]\) \(263732349218689/4160250\) \(266256000000000\) \([2]\) \(331776\) \(1.9019\)  
51600.bj2 51600bs1 \([0, -1, 0, -34408, -2188688]\) \(70393838689/8062500\) \(516000000000000\) \([2]\) \(165888\) \(1.5553\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 51600.bj have rank \(0\).

Complex multiplication

The elliptic curves in class 51600.bj do not have complex multiplication.

Modular form 51600.2.a.bj

sage: E.q_eigenform(10)
 
\(q - q^{3} + 2q^{7} + q^{9} - 2q^{11} + 2q^{13} - 4q^{17} + 2q^{19} + O(q^{20})\)  Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.