Properties

Label 51425u
Number of curves $4$
Conductor $51425$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("u1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 51425u have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(5\)\(1\)
\(11\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(3\) \( 1 - T + 3 T^{2}\) 1.3.ab
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 51425u do not have complex multiplication.

Modular form 51425.2.a.u

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + 4 q^{7} + 3 q^{8} - 3 q^{9} - 2 q^{13} - 4 q^{14} - q^{16} + q^{17} + 3 q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 51425u

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
51425.m3 51425u1 \([1, -1, 1, -2080, -15078]\) \(35937/17\) \(470570890625\) \([2]\) \(46080\) \(0.93388\) \(\Gamma_0(N)\)-optimal
51425.m2 51425u2 \([1, -1, 1, -17205, 862172]\) \(20346417/289\) \(7999705140625\) \([2, 2]\) \(92160\) \(1.2805\)  
51425.m4 51425u3 \([1, -1, 1, -2080, 2314172]\) \(-35937/83521\) \(-2311914785640625\) \([2]\) \(184320\) \(1.6270\)  
51425.m1 51425u4 \([1, -1, 1, -274330, 55372672]\) \(82483294977/17\) \(470570890625\) \([2]\) \(184320\) \(1.6270\)