Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-1006638x+388565892\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-1006638xz^2+388565892z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1304602875x+18132844065750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(696, 4674)$ | $0.25822419465095437022207075494$ | $\infty$ |
| $(572, -286)$ | $0$ | $2$ |
Integral points
\( \left(-978, 21414\right) \), \( \left(-978, -20436\right) \), \( \left(372, 7914\right) \), \( \left(372, -8286\right) \), \( \left(522, 2064\right) \), \( \left(522, -2586\right) \), \( \left(572, -286\right) \), \( \left(588, -78\right) \), \( \left(588, -510\right) \), \( \left(696, 4674\right) \), \( \left(696, -5370\right) \), \( \left(1068, 22530\right) \), \( \left(1068, -23598\right) \), \( \left(3936, 237630\right) \), \( \left(3936, -241566\right) \)
Invariants
| Conductor: | $N$ | = | \( 51150 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 11 \cdot 31$ |
|
| Discriminant: | $\Delta$ | = | $29961934992000000$ | = | $2^{10} \cdot 3^{11} \cdot 5^{6} \cdot 11 \cdot 31^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{7219775199978393625}{1917563839488} \) | = | $2^{-10} \cdot 3^{-11} \cdot 5^{3} \cdot 11^{-1} \cdot 31^{-2} \cdot 386549^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.1456716128501346345885615906$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.3409526566330844472881819240$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9911848769972889$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.8955403241571664$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.25822419465095437022207075494$ |
|
| Real period: | $\Omega$ | ≈ | $0.36321616125616659293925516267$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 440 $ = $ ( 2 \cdot 5 )\cdot11\cdot2\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $10.317032079704327284609640316 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 10.317032080 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.363216 \cdot 0.258224 \cdot 440}{2^2} \\ & \approx 10.317032080\end{aligned}$$
Modular invariants
Modular form 51150.2.a.cb
For more coefficients, see the Downloads section to the right.
| Modular degree: | 1013760 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $10$ | $I_{10}$ | split multiplicative | -1 | 1 | 10 | 10 |
| $3$ | $11$ | $I_{11}$ | split multiplicative | -1 | 1 | 11 | 11 |
| $5$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $31$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 8184 = 2^{3} \cdot 3 \cdot 11 \cdot 31 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 3722 & 1 \\ 2231 & 0 \end{array}\right),\left(\begin{array}{rr} 1057 & 4 \\ 2114 & 9 \end{array}\right),\left(\begin{array}{rr} 8181 & 4 \\ 8180 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 5458 & 1 \\ 5455 & 0 \end{array}\right),\left(\begin{array}{rr} 4093 & 4 \\ 2 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1025 & 7162 \\ 7160 & 1023 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[8184])$ is a degree-$72406794240000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/8184\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 825 = 3 \cdot 5^{2} \cdot 11 \) |
| $3$ | split multiplicative | $4$ | \( 17050 = 2 \cdot 5^{2} \cdot 11 \cdot 31 \) |
| $5$ | additive | $14$ | \( 1023 = 3 \cdot 11 \cdot 31 \) |
| $11$ | split multiplicative | $12$ | \( 1550 = 2 \cdot 5^{2} \cdot 31 \) |
| $31$ | split multiplicative | $32$ | \( 1650 = 2 \cdot 3 \cdot 5^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 51150cq
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 2046b1, its twist by $5$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{33}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.0.50740800.4 | \(\Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | split | add | ord | split | ord | ord | ord | ord | ord | split | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 10 | 2 | - | 1 | 12 | 1 | 3 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.