# Properties

 Label 510c Number of curves $2$ Conductor $510$ CM no Rank $0$ Graph # Related objects

Show commands for: SageMath
sage: E = EllipticCurve("510.d1")

sage: E.isogeny_class()

## Elliptic curves in class 510c

sage: E.isogeny_class().curves

LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
510.d2 510c1 [1, 1, 1, 14, 59]  80 $$\Gamma_0(N)$$-optimal
510.d1 510c2 [1, 1, 1, -156, 603]  160

## Rank

sage: E.rank()

The elliptic curves in class 510c have rank $$0$$.

## Modular form510.2.a.d

sage: E.q_eigenform(10)

$$q + q^{2} - q^{3} + q^{4} - q^{5} - q^{6} + 2q^{7} + q^{8} + q^{9} - q^{10} - q^{12} + 4q^{13} + 2q^{14} + q^{15} + q^{16} - q^{17} + q^{18} + 4q^{19} + O(q^{20})$$

## Isogeny matrix

sage: E.isogeny_class().matrix()

The $$i,j$$ entry is the smallest degree of a cyclic isogeny between the $$i$$-th and $$j$$-th curve in the isogeny class, in the Cremona numbering.

$$\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)$$

## Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)

The vertices are labelled with Cremona labels. 