Show commands:
SageMath
E = EllipticCurve("f1")
E.isogeny_class()
Elliptic curves in class 510.f
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
510.f1 | 510f3 | \([1, 0, 0, -186, -990]\) | \(711882749089/1721250\) | \(1721250\) | \([2]\) | \(128\) | \(0.075374\) | |
510.f2 | 510f4 | \([1, 0, 0, -166, 806]\) | \(506071034209/2505630\) | \(2505630\) | \([2]\) | \(128\) | \(0.075374\) | |
510.f3 | 510f2 | \([1, 0, 0, -16, -4]\) | \(454756609/260100\) | \(260100\) | \([2, 2]\) | \(64\) | \(-0.27120\) | |
510.f4 | 510f1 | \([1, 0, 0, 4, 0]\) | \(6967871/4080\) | \(-4080\) | \([2]\) | \(32\) | \(-0.61777\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 510.f have rank \(0\).
Complex multiplication
The elliptic curves in class 510.f do not have complex multiplication.Modular form 510.2.a.f
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.