Properties

Label 5070k
Number of curves $4$
Conductor $5070$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("k1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 5070k have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1 - T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 5070k do not have complex multiplication.

Modular form 5070.2.a.k

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} + q^{5} - q^{6} - 2 q^{7} - q^{8} + q^{9} - q^{10} + q^{12} + 2 q^{14} + q^{15} + q^{16} - q^{18} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 5070k

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5070.k3 5070k1 \([1, 0, 1, -1018, 80108]\) \(-24137569/561600\) \(-2710735934400\) \([2]\) \(8064\) \(1.0664\) \(\Gamma_0(N)\)-optimal
5070.k2 5070k2 \([1, 0, 1, -34818, 2486668]\) \(967068262369/4928040\) \(23786707824360\) \([2]\) \(16128\) \(1.4130\)  
5070.k4 5070k3 \([1, 0, 1, 9122, -2118244]\) \(17394111071/411937500\) \(-1988343632437500\) \([2]\) \(24192\) \(1.6157\)  
5070.k1 5070k4 \([1, 0, 1, -202128, -33214244]\) \(189208196468929/10860320250\) \(52420691525582250\) \([2]\) \(48384\) \(1.9623\)