Minimal Weierstrass equation
\(y^2+xy+y=x^3-x^2+20148x+32163887\)
Mordell-Weil group structure
$\Z$
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(271, 7445\right)\)
|
$\hat{h}(P)$ | ≈ | $0.23428542293602147057813604464$ |
Integral points
\( \left(145, 6101\right) \), \( \left(145, -6247\right) \), \( \left(271, 7445\right) \), \( \left(271, -7717\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 5054 \) | = | $2 \cdot 7 \cdot 19^{2}$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $-447574222639176416 $ | = | $-1 \cdot 2^{5} \cdot 7^{7} \cdot 19^{8} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{53261199}{26353376} \) | = | $2^{-5} \cdot 3^{3} \cdot 7^{-7} \cdot 19 \cdot 47^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $2.0659636738345777293519765893\dots$ | ||
Stable Faltings height: | $0.10300435439028408934595830138\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $0.23428542293602147057813604464\dots$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $0.23104263642920630508424412789\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 105 $ = $ 5\cdot7\cdot3 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $1$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 5.6836417881673542659860103321 $ |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 47880 | ||
$ \Gamma_0(N) $-optimal: | yes | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 3 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $5$ | $I_{5}$ | Split multiplicative | -1 | 1 | 5 | 5 |
$7$ | $7$ | $I_{7}$ | Split multiplicative | -1 | 1 | 7 | 7 |
$19$ | $3$ | $IV^{*}$ | Additive | 1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$7$ | 7B.2.1 | 7.16.0.1 |
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | ss | ord | split | ord | ord | ss | add | ord | ord | ord | ord | ord | ord | ss |
$\lambda$-invariant(s) | 2 | 3,3 | 3 | 2 | 1 | 1 | 1,1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
7.
Its isogeny class 5054b
consists of 2 curves linked by isogenies of
degree 7.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.20216.1 | \(\Z/2\Z\) | Not in database |
$3$ | 3.3.361.1 | \(\Z/7\Z\) | Not in database |
$6$ | 6.0.22886452736.1 | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$8$ | 8.2.10949022029232.4 | \(\Z/3\Z\) | Not in database |
$9$ | 9.3.8262009437696.1 | \(\Z/14\Z\) | Not in database |
$12$ | Deg 12 | \(\Z/4\Z\) | Not in database |
$18$ | 18.0.11987688643769434377362138464256.1 | \(\Z/2\Z \times \Z/14\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.