Properties

Label 50540b
Number of curves $1$
Conductor $50540$
CM no
Rank $1$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("b1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 50540b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
50540.a1 50540b1 [0, 0, 0, 11552, -1454108] [] 393120 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 50540b1 has rank \(1\).

Complex multiplication

The elliptic curves in class 50540b do not have complex multiplication.

Modular form 50540.2.a.b

sage: E.q_eigenform(10)
 
\( q - 3q^{3} - q^{5} - q^{7} + 6q^{9} - 5q^{11} + 3q^{13} + 3q^{15} - q^{17} + O(q^{20}) \)