Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-12823x+452773\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-12823xz^2+452773z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-16618635x+21373864902\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Torsion generators
\( \left(\frac{163}{4}, -\frac{167}{8}\right) \)
Integral points
None
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 5054 \) | = | $2 \cdot 7 \cdot 19^{2}$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $44279206830152 $ | = | $2^{3} \cdot 7^{6} \cdot 19^{6} $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{4956477625}{941192} \) | = | $2^{-3} \cdot 5^{3} \cdot 7^{-6} \cdot 11^{3} \cdot 31^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $1.3360143256722498418876734523\dots$ | ||
Stable Faltings height: | $-0.13620516391097038811684026364\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $0$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $1$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $0.60817709098151674228887984272\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 36 $ = $ 3\cdot( 2 \cdot 3 )\cdot2 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $2$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L(E,1) $ ≈ $ 5.4735938188336506805999185845 $ |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 14256 | ||
$ \Gamma_0(N) $-optimal: | no | ||
Manin constant: | 1 |
Local data
This elliptic curve is not semistable. There are 3 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $3$ | $I_{3}$ | Split multiplicative | -1 | 1 | 3 | 3 |
$7$ | $6$ | $I_{6}$ | Split multiplicative | -1 | 1 | 6 | 6 |
$19$ | $2$ | $I_0^{*}$ | Additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.6.0.6 |
$3$ | 3Cs | 3.12.0.1 |
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.
Iwasawa invariants
$p$ | 2 | 3 | 7 | 19 |
---|---|---|---|---|
Reduction type | split | ord | split | add |
$\lambda$-invariant(s) | 2 | 2 | 1 | - |
$\mu$-invariant(s) | 0 | 0 | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 5054.c
consists of 6 curves linked by isogenies of
degrees dividing 18.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | Not in database |
$2$ | \(\Q(\sqrt{57}) \) | \(\Z/6\Z\) | 2.2.57.1-196.1-e4 |
$2$ | \(\Q(\sqrt{-19}) \) | \(\Z/6\Z\) | Not in database |
$4$ | 4.0.566048.1 | \(\Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{-3}, \sqrt{-19})\) | \(\Z/3\Z \oplus \Z/6\Z\) | Not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{57})\) | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{-19})\) | \(\Z/2\Z \oplus \Z/6\Z\) | Not in database |
$8$ | 8.4.26783688687616.2 | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.0.20506261651456.52 | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.0.43237380096.5 | \(\Z/6\Z \oplus \Z/6\Z\) | Not in database |
$8$ | 8.0.25953237402624.6 | \(\Z/12\Z\) | Not in database |
$8$ | 8.0.320410338304.2 | \(\Z/12\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/3\Z \oplus \Z/12\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | Not in database |
$18$ | 18.6.139505944622436332012518897168668561408.2 | \(\Z/18\Z\) | Not in database |
$18$ | 18.0.1730379947738505061232732377131.1 | \(\Z/18\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.