Properties

Label 5054.a
Number of curves $2$
Conductor $5054$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("a1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 5054.a

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
5054.a1 5054a2 \([1, -1, 0, -75754, 8056692]\) \(-133179212896925841/240518168576\) \(-86827058855936\) \([]\) \(17640\) \(1.5667\)  
5054.a2 5054a1 \([1, -1, 0, 56, -4704]\) \(53261199/26353376\) \(-9513568736\) \([]\) \(2520\) \(0.59374\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 5054.a have rank \(1\).

Complex multiplication

The elliptic curves in class 5054.a do not have complex multiplication.

Modular form 5054.2.a.a

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + q^{5} + q^{7} - q^{8} - 3 q^{9} - q^{10} - 2 q^{11} + 5 q^{13} - q^{14} + q^{16} + 3 q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.