Show commands for:
SageMath
sage: E = EllipticCurve("c1")
sage: E.isogeny_class()
Elliptic curves in class 504c
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
504.c4 | 504c1 | [0, 0, 0, 9, -54] | [2] | 64 | \(\Gamma_0(N)\)-optimal |
504.c3 | 504c2 | [0, 0, 0, -171, -810] | [2, 2] | 128 | |
504.c1 | 504c3 | [0, 0, 0, -2691, -53730] | [2] | 256 | |
504.c2 | 504c4 | [0, 0, 0, -531, 3726] | [2] | 256 |
Rank
sage: E.rank()
The elliptic curves in class 504c have rank \(0\).
Complex multiplication
The elliptic curves in class 504c do not have complex multiplication.Modular form 504.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.