Show commands for:
SageMath
sage: E = EllipticCurve("bo1")
sage: E.isogeny_class()
Elliptic curves in class 5040bo
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
5040.bg3 | 5040bo1 | [0, 0, 0, -507, -2774] | [2] | 3072 | \(\Gamma_0(N)\)-optimal |
5040.bg2 | 5040bo2 | [0, 0, 0, -3387, 73834] | [2, 2] | 6144 | |
5040.bg1 | 5040bo3 | [0, 0, 0, -53787, 4801354] | [2] | 12288 | |
5040.bg4 | 5040bo4 | [0, 0, 0, 933, 249226] | [4] | 12288 |
Rank
sage: E.rank()
The elliptic curves in class 5040bo have rank \(1\).
Complex multiplication
The elliptic curves in class 5040bo do not have complex multiplication.Modular form 5040.2.a.bo
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.