Properties

Label 5040.bm
Number of curves $4$
Conductor $5040$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("5040.bm1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 5040.bm

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
5040.bm1 5040bn3 [0, 0, 0, -38547, -2912814] [2] 12288  
5040.bm2 5040bn4 [0, 0, 0, -12627, 510354] [2] 12288  
5040.bm3 5040bn2 [0, 0, 0, -2547, -40014] [2, 2] 6144  
5040.bm4 5040bn1 [0, 0, 0, 333, -3726] [2] 3072 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 5040.bm have rank \(1\).

Modular form 5040.2.a.bm

sage: E.q_eigenform(10)
 
\( q + q^{5} + q^{7} + 4q^{11} - 6q^{13} - 2q^{17} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.