Properties

Label 50.b
Number of curves $4$
Conductor $50$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 50.b have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(5\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 50.b do not have complex multiplication.

Modular form 50.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{3} + q^{4} - q^{6} - 2 q^{7} + q^{8} - 2 q^{9} - 3 q^{11} - q^{12} + 4 q^{13} - 2 q^{14} + q^{16} + 3 q^{17} - 2 q^{18} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 15 & 5 \\ 3 & 1 & 5 & 15 \\ 15 & 5 & 1 & 3 \\ 5 & 15 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 50.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
50.b1 50b4 \([1, 1, 1, -3138, -68969]\) \(-349938025/8\) \(-78125000\) \([]\) \(30\) \(0.62793\)  
50.b2 50b3 \([1, 1, 1, -13, -219]\) \(-25/2\) \(-19531250\) \([]\) \(10\) \(0.078619\)  
50.b3 50b1 \([1, 1, 1, -3, 1]\) \(-121945/32\) \(-800\) \([5]\) \(2\) \(-0.72610\) \(\Gamma_0(N)\)-optimal
50.b4 50b2 \([1, 1, 1, 22, -9]\) \(46969655/32768\) \(-819200\) \([5]\) \(6\) \(-0.17679\)