# Properties

 Label 50.a1 Conductor 50 Discriminant -5000 j-invariant $$-\frac{349938025}{8}$$ CM no Rank 0 Torsion Structure $$\mathrm{Trivial}$$

# Related objects

Show commands for: Magma / SageMath / Pari/GP

## Minimal Weierstrass equation

magma: E := EllipticCurve([1, 0, 1, -126, -552]); // or

magma: E := EllipticCurve("50a2");

sage: E = EllipticCurve([1, 0, 1, -126, -552]) # or

sage: E = EllipticCurve("50a2")

gp: E = ellinit([1, 0, 1, -126, -552]) \\ or

gp: E = ellinit("50a2")

$$y^2 + x y + y = x^{3} - 126 x - 552$$

Trivial

## Integral points

magma: IntegralPoints(E);

sage: E.integral_points()

None

## Invariants

 magma: Conductor(E);  sage: E.conductor().factor()  gp: ellglobalred(E)[1] Conductor: $$50$$ = $$2 \cdot 5^{2}$$ magma: Discriminant(E);  sage: E.discriminant().factor()  gp: E.disc Discriminant: $$-5000$$ = $$-1 \cdot 2^{3} \cdot 5^{4}$$ magma: jInvariant(E);  sage: E.j_invariant().factor()  gp: E.j j-invariant: $$-\frac{349938025}{8}$$ = $$-1 \cdot 2^{-3} \cdot 5^{2} \cdot 241^{3}$$ Endomorphism ring: $$\Z$$ (no Complex Multiplication) Sato-Tate Group: $\mathrm{SU}(2)$

## BSD invariants

 magma: Rank(E);  sage: E.rank() Rank: $$0$$ magma: Regulator(E);  sage: E.regulator() Regulator: $$1$$ magma: RealPeriod(E);  sage: E.period_lattice().omega()  gp: E.omega[1] Real period: $$0.713164981428$$ magma: TamagawaNumbers(E);  sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]] Tamagawa product: $$1$$  = $$1\cdot1$$ magma: Order(TorsionSubgroup(E));  sage: E.torsion_order()  gp: elltors(E)[1] Torsion order: $$1$$ magma: MordellWeilShaInformation(E);  sage: E.sha().an_numerical() Analytic order of Ш: $$1$$ (exact)

## Modular invariants

#### Modular form50.2.a.a

magma: ModularForm(E);

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

$$q - q^{2} + q^{3} + q^{4} - q^{6} + 2q^{7} - q^{8} - 2q^{9} - 3q^{11} + q^{12} - 4q^{13} - 2q^{14} + q^{16} - 3q^{17} + 2q^{18} + 5q^{19} + O(q^{20})$$

 magma: ModularDegree(E);  sage: E.modular_degree() Modular degree: 6 $$\Gamma_0(N)$$-optimal: no Manin constant: 1

#### Special L-value

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

$$L(E,1)$$ ≈ $$0.713164981428$$

## Local data

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

sage: E.local_data()

gp: ellglobalred(E)[5]

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$1$$ $$I_{3}$$ Non-split multiplicative 1 1 3 3
$$5$$ $$1$$ $$IV$$ Additive -1 2 4 0

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X4.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 7 & 7 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 0 \\ 1 & 1 \end{array}\right)$ and has index 2.

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$3$$ B.1.2
$$5$$ B.1.3

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

## Iwasawa invariants

$p$ Reduction type $\lambda$-invariant(s) 2 3 5 nonsplit ordinary add 2 2 - 0 1 -

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 7$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 3, 5 and 15.
Its isogeny class 50.a consists of 4 curves linked by isogenies of degrees dividing 15.

## Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 $$\Q(\sqrt{-3})$$ $$\Z/3\Z$$ 2.0.3.1-2500.1-b1
3 3.1.675.1 $$\Z/3\Z$$ Not in database
3.1.200.1 $$\Z/2\Z$$ Not in database
4 $$\Q(\zeta_{5})$$ $$\Z/5\Z$$ Not in database
6 6.0.320000.1 $$\Z/2\Z \times \Z/2\Z$$ Not in database
6.0.1366875.1 $$\Z/3\Z \times \Z/3\Z$$ Not in database
6.0.1080000.2 $$\Z/6\Z$$ Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.