Learn more

Refine search


Results (1-50 of 73 matches)

Next   Download to        
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation
4998.a1 4998.a \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.412666720$ $[1, 1, 0, -461724, 34374096]$ \(y^2+xy=x^3+x^2-461724x+34374096\)
4998.a2 4998.a \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $1.238000160$ $[1, 1, 0, -266109, -52946739]$ \(y^2+xy=x^3+x^2-266109x-52946739\)
4998.b1 4998.b \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $3.742122449$ $[1, 1, 0, -667356, -208043184]$ \(y^2+xy=x^3+x^2-667356x-208043184\)
4998.b2 4998.b \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.871061224$ $[1, 1, 0, -8796, -8236080]$ \(y^2+xy=x^3+x^2-8796x-8236080\)
4998.c1 4998.c \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -1305651, 573689565]$ \(y^2+xy=x^3+x^2-1305651x+573689565\)
4998.c2 4998.c \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -80931, 9093645]$ \(y^2+xy=x^3+x^2-80931x+9093645\)
4998.d1 4998.d \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $0.871911894$ $[1, 1, 0, -36775, 2036917]$ \(y^2+xy=x^3+x^2-36775x+2036917\)
4998.d2 4998.d \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $2.615735683$ $[1, 1, 0, -12520, -544256]$ \(y^2+xy=x^3+x^2-12520x-544256\)
4998.d3 4998.d \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $5.231471366$ $[1, 1, 0, -10560, -717912]$ \(y^2+xy=x^3+x^2-10560x-717912\)
4998.d4 4998.d \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.743823788$ $[1, 1, 0, 88665, 13050549]$ \(y^2+xy=x^3+x^2+88665x+13050549\)
4998.e1 4998.e \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -327492, -72248112]$ \(y^2+xy=x^3+x^2-327492x-72248112\)
4998.f1 4998.f \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -3392, -110592]$ \(y^2+xy=x^3+x^2-3392x-110592\)
4998.g1 4998.g \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.209225282$ $[1, 1, 0, -417, 3123]$ \(y^2+xy=x^3+x^2-417x+3123\)
4998.h1 4998.h \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, 808, 4152]$ \(y^2+xy=x^3+x^2+808x+4152\)
4998.i1 4998.i \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.402000836$ $[1, 1, 0, -242, 4278]$ \(y^2+xy=x^3+x^2-242x+4278\)
4998.j1 4998.j \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -13696, 606208]$ \(y^2+xy=x^3+x^2-13696x+606208\)
4998.j2 4998.j \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 0, -1201, -16043]$ \(y^2+xy=x^3+x^2-1201x-16043\)
4998.k1 4998.k \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $2.755637005$ $[1, 0, 1, -671130, -209942708]$ \(y^2+xy+y=x^3-671130x-209942708\)
4998.k2 4998.k \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\Z/3\Z$ $0.918545668$ $[1, 0, 1, -58875, 5326150]$ \(y^2+xy+y=x^3-58875x+5326150\)
4998.l1 4998.l \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -2703552, -1711197554]$ \(y^2+xy+y=x^3-2703552x-1711197554\)
4998.l2 4998.l \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -163392, -28595570]$ \(y^2+xy+y=x^3-163392x-28595570\)
4998.m1 4998.m \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $1.248790677$ $[1, 0, 1, -16047134, 24732961040]$ \(y^2+xy+y=x^3-16047134x+24732961040\)
4998.n1 4998.n \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -20459, -1132540]$ \(y^2+xy+y=x^3-20459x-1132540\)
4998.o1 4998.o \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -166234, 37434380]$ \(y^2+xy+y=x^3-166234x+37434380\)
4998.p1 4998.p \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.928176459$ $[1, 0, 1, 16, -10]$ \(y^2+xy+y=x^3+16x-10\)
4998.q1 4998.q \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.140917372$ $[1, 0, 1, -1839, 31210]$ \(y^2+xy+y=x^3-1839x+31210\)
4998.r1 4998.r \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $1.139048290$ $[1, 0, 1, -11884, -1502980]$ \(y^2+xy+y=x^3-11884x-1502980\)
4998.s1 4998.s \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -715279, 233372738]$ \(y^2+xy+y=x^3-715279x+233372738\)
4998.t1 4998.t \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $4.656488247$ $[1, 0, 1, -13620, 604594]$ \(y^2+xy+y=x^3-13620x+604594\)
4998.t2 4998.t \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $2.328244123$ $[1, 0, 1, -180, 23986]$ \(y^2+xy+y=x^3-180x+23986\)
4998.u1 4998.u \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $2.258744309$ $[1, 0, 1, -18695, -985246]$ \(y^2+xy+y=x^3-18695x-985246\)
4998.u2 4998.u \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.129372154$ $[1, 0, 1, -1055, -18574]$ \(y^2+xy+y=x^3-1055x-18574\)
4998.v1 4998.v \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -63976925, -196967451544]$ \(y^2+xy+y=x^3-63976925x-196967451544\)
4998.v2 4998.v \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -3965645, -3131017144]$ \(y^2+xy+y=x^3-3965645x-3131017144\)
4998.w1 4998.w \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -22624502, -11858188408]$ \(y^2+xy+y=x^3-22624502x-11858188408\)
4998.w2 4998.w \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\Z/3\Z$ $1$ $[1, 0, 1, -13039367, 18121613402]$ \(y^2+xy+y=x^3-13039367x+18121613402\)
4998.x1 4998.x \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -124, -346]$ \(y^2+xy+y=x^3-124x-346\)
4998.x2 4998.x \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, 366, -2306]$ \(y^2+xy+y=x^3+366x-2306\)
4998.y1 4998.y \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.058394967$ $[1, 1, 1, -442, 3527]$ \(y^2+xy+y=x^3+x^2-442x+3527\)
4998.z1 4998.z \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.726420750$ $[1, 1, 1, 2694, -49785]$ \(y^2+xy+y=x^3+x^2+2694x-49785\)
4998.ba1 4998.ba \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.439133594$ $[1, 1, 1, 9212930, 137302547003]$ \(y^2+xy+y=x^3+x^2+9212930x+137302547003\)
4998.bb1 4998.bb \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, 216040, -170134567]$ \(y^2+xy+y=x^3+x^2+216040x-170134567\)
4998.bc1 4998.bc \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $0$ $\mathsf{trivial}$ $1$ $[1, 1, 1, -85, -337]$ \(y^2+xy+y=x^3+x^2-85x-337\)
4998.bd1 4998.bd \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\mathsf{trivial}$ $0.141756526$ $[1, 1, 1, -50, -1]$ \(y^2+xy+y=x^3+x^2-50x-1\)
4998.be1 4998.be \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $1.755122514$ $[1, 1, 1, -1359457, 609526973]$ \(y^2+xy+y=x^3+x^2-1359457x+609526973\)
4998.be2 4998.be \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $3.510245028$ $[1, 1, 1, -84967, 9497081]$ \(y^2+xy+y=x^3+x^2-84967x+9497081\)
4998.be3 4998.be \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $7.020490057$ $[1, 1, 1, -80557, 10532549]$ \(y^2+xy+y=x^3+x^2-80557x+10532549\)
4998.be4 4998.be \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $1.755122514$ $[1, 1, 1, -5587, 130241]$ \(y^2+xy+y=x^3+x^2-5587x+130241\)
4998.be5 4998.be \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $0.877561257$ $[1, 1, 1, -1667, -24991]$ \(y^2+xy+y=x^3+x^2-1667x-24991\)
4998.be6 4998.be \( 2 \cdot 3 \cdot 7^{2} \cdot 17 \) $1$ $\Z/2\Z$ $3.510245028$ $[1, 1, 1, 11073, 776649]$ \(y^2+xy+y=x^3+x^2+11073x+776649\)
Next   Download to