Show commands:
SageMath
E = EllipticCurve("a1")
E.isogeny_class()
Elliptic curves in class 495.a
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
495.a1 | 495a3 | \([1, -1, 1, -533, -4598]\) | \(22930509321/6875\) | \(5011875\) | \([2]\) | \(128\) | \(0.26364\) | |
495.a2 | 495a4 | \([1, -1, 1, -263, 1666]\) | \(2749884201/73205\) | \(53366445\) | \([2]\) | \(128\) | \(0.26364\) | |
495.a3 | 495a2 | \([1, -1, 1, -38, -44]\) | \(8120601/3025\) | \(2205225\) | \([2, 2]\) | \(64\) | \(-0.082933\) | |
495.a4 | 495a1 | \([1, -1, 1, 7, -8]\) | \(59319/55\) | \(-40095\) | \([2]\) | \(32\) | \(-0.42951\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 495.a have rank \(1\).
Complex multiplication
The elliptic curves in class 495.a do not have complex multiplication.Modular form 495.2.a.a
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.