Properties

Label 4928o
Number of curves $3$
Conductor $4928$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 4928o have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(7\)\(1 - T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 3 T^{2}\) 1.3.a
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4928o do not have complex multiplication.

Modular form 4928.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 3 q^{5} + q^{7} - 2 q^{9} + q^{11} + 4 q^{13} + 3 q^{15} - 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrr} 1 & 3 & 9 \\ 3 & 1 & 3 \\ 9 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 4928o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4928.i1 4928o1 \([0, -1, 0, -357, 2719]\) \(-78843215872/539\) \(-34496\) \([]\) \(960\) \(0.051574\) \(\Gamma_0(N)\)-optimal
4928.i2 4928o2 \([0, -1, 0, -197, 4999]\) \(-13278380032/156590819\) \(-10021812416\) \([]\) \(2880\) \(0.60088\)  
4928.i3 4928o3 \([0, -1, 0, 1763, -128281]\) \(9463555063808/115539436859\) \(-7394523958976\) \([]\) \(8640\) \(1.1502\)