Properties

Label 492765.d3
Conductor $492765$
Discriminant $-3.086\times 10^{17}$
j-invariant \( -\frac{105756712489}{6558605235} \)
CM no
Rank $1$
Torsion structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

\(y^2+xy+y=x^3+x^2-35566x+26835014\) Copy content Toggle raw display (homogenize, simplify)
\(y^2z+xyz+yz^2=x^3+x^2z-35566xz^2+26835014z^3\) Copy content Toggle raw display (dehomogenize, simplify)
\(y^2=x^3-46093563x+1252705824918\) Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([1, 1, 1, -35566, 26835014])
 
Copy content gp:E = ellinit([1, 1, 1, -35566, 26835014])
 
Copy content magma:E := EllipticCurve([1, 1, 1, -35566, 26835014]);
 
Copy content oscar:E = elliptic_curve([1, 1, 1, -35566, 26835014])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

\(\Z \oplus \Z/{2}\Z\)

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

$P$$\hat{h}(P)$Order
$(-157, 5424)$$4.0279034439097482531967198493$$\infty$
$(-1357/4, 1353/8)$$0$$2$

Integral points

\( \left(-157, 5424\right) \), \( \left(-157, -5268\right) \) Copy content Toggle raw display

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: $N$  =  \( 492765 \) = $3 \cdot 5 \cdot 7 \cdot 13 \cdot 19^{2}$
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: $\Delta$  =  $-308555361411787035$ = $-1 \cdot 3^{8} \cdot 5 \cdot 7 \cdot 13^{4} \cdot 19^{6} $
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: $j$  =  \( -\frac{105756712489}{6558605235} \) = $-1 \cdot 3^{-8} \cdot 5^{-1} \cdot 7^{-1} \cdot 13^{-4} \cdot 4729^{3}$
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: $\mathrm{End}(E)$ = $\Z$
Geometric endomorphism ring: $\mathrm{End}(E_{\overline{\Q}})$  =  \(\Z\)    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: $\mathrm{ST}(E)$ = $\mathrm{SU}(2)$
Faltings height: $h_{\mathrm{Faltings}}$ ≈ $2.0356997748748541830972748810$
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: $h_{\mathrm{stable}}$ ≈ $0.56348028529163395309276116506$
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
$abc$ quality: $Q$ ≈ $0.9573510240464985$
Szpiro ratio: $\sigma_{m}$ ≈ $3.641704237109148$

BSD invariants

Analytic rank: $r_{\mathrm{an}}$ = $ 1$
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: $r$ = $ 1$
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: $\mathrm{Reg}(E/\Q)$ ≈ $4.0279034439097482531967198493$
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: $\Omega$ ≈ $0.25316547820731903496994232044$
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: $\prod_{p}c_p$ = $ 16 $  = $ 2\cdot1\cdot1\cdot2^{2}\cdot2 $
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: $\#E(\Q)_{\mathrm{tor}}$ = $2$
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: $ L'(E,1)$ ≈ $4.0789044062012746412947552504 $
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Ш${}_{\mathrm{an}}$  ≈  $1$    (rounded)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

$$\begin{aligned} 4.078904406 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.253165 \cdot 4.027903 \cdot 16}{2^2} \\ & \approx 4.078904406\end{aligned}$$

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([1, 1, 1, -35566, 26835014]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([1, 1, 1, -35566, 26835014]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 492765.2.a.d

\( q - q^{2} - q^{3} - q^{4} - q^{5} + q^{6} - q^{7} + 3 q^{8} + q^{9} + q^{10} + 4 q^{11} + q^{12} + q^{13} + q^{14} + q^{15} - q^{16} + 6 q^{17} - q^{18} + O(q^{20}) \) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 6193152
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
$ \Gamma_0(N) $-optimal: no
Manin constant: 1 (conditional*)
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 
* The Manin constant is correct provided that curve 492765.d4 is optimal.

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:

$p$ Tamagawa number Kodaira symbol Reduction type Root number $\mathrm{ord}_p(N)$ $\mathrm{ord}_p(\Delta)$ $\mathrm{ord}_p(\mathrm{den}(j))$
$3$ $2$ $I_{8}$ nonsplit multiplicative 1 1 8 8
$5$ $1$ $I_{1}$ nonsplit multiplicative 1 1 1 1
$7$ $1$ $I_{1}$ nonsplit multiplicative 1 1 1 1
$13$ $4$ $I_{4}$ split multiplicative -1 1 4 4
$19$ $2$ $I_0^{*}$ additive -1 2 6 0

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.

prime $\ell$ mod-$\ell$ image $\ell$-adic image
$2$ 2B 4.6.0.1

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[43679, 0, 0, 69159], [15296, 61883, 10925, 43682], [1, 0, 8, 1], [1, 8, 0, 1], [69153, 8, 69152, 9], [1, 4, 4, 17], [7, 6, 69154, 69155], [47881, 3648, 20444, 14593], [18659, 18658, 23218, 21395], [42124, 43681, 26543, 10926], [20483, 35036, 38722, 36861]] GL(2,Integers(69160)).subgroup(gens)
 
Copy content magma:Gens := [[43679, 0, 0, 69159], [15296, 61883, 10925, 43682], [1, 0, 8, 1], [1, 8, 0, 1], [69153, 8, 69152, 9], [1, 4, 4, 17], [7, 6, 69154, 69155], [47881, 3648, 20444, 14593], [18659, 18658, 23218, 21395], [42124, 43681, 26543, 10926], [20483, 35036, 38722, 36861]]; sub<GL(2,Integers(69160))|Gens>;
 

The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 69160 = 2^{3} \cdot 5 \cdot 7 \cdot 13 \cdot 19 \), index $48$, genus $0$, and generators

$\left(\begin{array}{rr} 43679 & 0 \\ 0 & 69159 \end{array}\right),\left(\begin{array}{rr} 15296 & 61883 \\ 10925 & 43682 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 69153 & 8 \\ 69152 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 69154 & 69155 \end{array}\right),\left(\begin{array}{rr} 47881 & 3648 \\ 20444 & 14593 \end{array}\right),\left(\begin{array}{rr} 18659 & 18658 \\ 23218 & 21395 \end{array}\right),\left(\begin{array}{rr} 42124 & 43681 \\ 26543 & 10926 \end{array}\right),\left(\begin{array}{rr} 20483 & 35036 \\ 38722 & 36861 \end{array}\right)$.

Input positive integer $m$ to see the generators of the reduction of $H$ to $\mathrm{GL}_2(\Z/m\Z)$:

The torsion field $K:=\Q(E[69160])$ is a degree-$99918114560409600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/69160\Z)$.

The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.

$\ell$ Reduction type Serre weight Serre conductor
$2$ good $2$ \( 12635 = 5 \cdot 7 \cdot 19^{2} \)
$3$ nonsplit multiplicative $4$ \( 164255 = 5 \cdot 7 \cdot 13 \cdot 19^{2} \)
$5$ nonsplit multiplicative $6$ \( 98553 = 3 \cdot 7 \cdot 13 \cdot 19^{2} \)
$7$ nonsplit multiplicative $8$ \( 70395 = 3 \cdot 5 \cdot 13 \cdot 19^{2} \)
$13$ split multiplicative $14$ \( 37905 = 3 \cdot 5 \cdot 7 \cdot 19^{2} \)
$19$ additive $182$ \( 1365 = 3 \cdot 5 \cdot 7 \cdot 13 \)

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree $d$ for $d=$ 2 and 4.
Its isogeny class 492765.d consists of 4 curves linked by isogenies of degrees dividing 4.

Twists

The minimal quadratic twist of this elliptic curve is 1365.d3, its twist by $-19$.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

$p$-adic regulators

$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.