Properties

Label 4900n
Number of curves $1$
Conductor $4900$
CM no
Rank $1$

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("n1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 4900n

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
4900.u1 4900n1 [0, 0, 0, 39200, -9089500] [] 69120 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 4900n1 has rank \(1\).

Complex multiplication

The elliptic curves in class 4900n do not have complex multiplication.

Modular form 4900.2.a.n

sage: E.q_eigenform(10)
 
\( q + 3q^{3} + 6q^{9} - 5q^{11} - 3q^{13} - q^{17} - 6q^{19} + O(q^{20}) \)