Properties

Label 4900.e
Number of curves $4$
Conductor $4900$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("e1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 4900.e have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 4900.e do not have complex multiplication.

Modular form 4900.2.a.e

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} + q^{9} + 2 q^{13} - 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 4900.e

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4900.e1 4900k3 \([0, 1, 0, -50633, 4367488]\) \(488095744/125\) \(3676531250000\) \([2]\) \(12960\) \(1.3970\)  
4900.e2 4900k4 \([0, 1, 0, -44508, 5469988]\) \(-20720464/15625\) \(-7353062500000000\) \([2]\) \(25920\) \(1.7436\)  
4900.e3 4900k1 \([0, 1, 0, -1633, -18012]\) \(16384/5\) \(147061250000\) \([2]\) \(4320\) \(0.84772\) \(\Gamma_0(N)\)-optimal
4900.e4 4900k2 \([0, 1, 0, 4492, -116012]\) \(21296/25\) \(-11764900000000\) \([2]\) \(8640\) \(1.1943\)