sage:E = EllipticCurve("c1")
E.isogeny_class()
sage:E.rank()
The elliptic curves in class 490.c have
rank 1.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1+T |
5 | 1+T |
7 | 1 |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
3 |
1−T+3T2 |
1.3.ab
|
11 |
1+6T+11T2 |
1.11.g
|
13 |
1+4T+13T2 |
1.13.e
|
17 |
1+17T2 |
1.17.a
|
19 |
1−2T+19T2 |
1.19.ac
|
23 |
1+3T+23T2 |
1.23.d
|
29 |
1+3T+29T2 |
1.29.d
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 490.c do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1331)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.
Elliptic curves in class 490.c
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
490.c1 |
490a2 |
[1,0,1,−1594,−26708] |
−77626969/8000 |
−46118408000 |
[] |
504 |
0.78567
|
|
490.c2 |
490a1 |
[1,0,1,121,46] |
34391/20 |
−115296020 |
[3] |
168 |
0.23636
|
Γ0(N)-optimal |