Properties

Label 486720nq
Number of curves $2$
Conductor $486720$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("nq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 486720nq have rank \(2\).

Complex multiplication

The elliptic curves in class 486720nq do not have complex multiplication.

Modular form 486720.2.a.nq

Copy content sage:E.q_eigenform(10)
 
\(q + q^{5} + q^{7} - 3 q^{11} - 3 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 486720nq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
486720.nq1 486720nq1 \([0, 0, 0, -28392, 1849874]\) \(-303464448/1625\) \(-13553679672000\) \([]\) \(1161216\) \(1.3643\) \(\Gamma_0(N)\)-optimal
486720.nq2 486720nq2 \([0, 0, 0, 73008, 9846954]\) \(7077888/10985\) \(-66793075570802880\) \([]\) \(3483648\) \(1.9136\)