Properties

Label 486720.pq
Number of curves $1$
Conductor $486720$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("pq1")
 
E.isogeny_class()
 

Elliptic curves in class 486720.pq

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
486720.pq1 486720pq1 \([0, 0, 0, 1127568, 11964967456]\) \(74251994112/29007265625\) \(-61937063217918720000000\) \([]\) \(36126720\) \(3.0525\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 486720.pq1 has rank \(0\).

Complex multiplication

The elliptic curves in class 486720.pq do not have complex multiplication.

Modular form 486720.2.a.pq

sage: E.q_eigenform(10)
 
\(q + q^{5} + 3 q^{7} + 3 q^{11} - 3 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display