Properties

Label 4864.p
Number of curves $1$
Conductor $4864$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("p1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 4864.p

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4864.p1 4864g1 \([0, 0, 0, -88, 320]\) \(-2299968/19\) \(-622592\) \([]\) \(1920\) \(-0.061536\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 4864.p1 has rank \(0\).

Complex multiplication

The elliptic curves in class 4864.p do not have complex multiplication.

Modular form 4864.2.a.p

sage: E.q_eigenform(10)
 
\(q + 3q^{3} + 4q^{5} + q^{7} + 6q^{9} + 5q^{13} + 12q^{15} - 5q^{17} + q^{19} + O(q^{20})\)  Toggle raw display