Properties

Label 4864.m
Number of curves $1$
Conductor $4864$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("m1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 4864.m

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4864.m1 4864b1 \([0, 1, 0, 37, 41]\) \(10648000/6859\) \(-3511808\) \([]\) \(576\) \(-0.055107\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 4864.m1 has rank \(1\).

Complex multiplication

The elliptic curves in class 4864.m do not have complex multiplication.

Modular form 4864.2.a.m

sage: E.q_eigenform(10)
 
\(q + q^{3} + 3q^{7} - 2q^{9} - 3q^{13} + 3q^{17} - q^{19} + O(q^{20})\)  Toggle raw display