Show commands:
SageMath
E = EllipticCurve("cd1")
E.isogeny_class()
Elliptic curves in class 486330cd
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
486330.cd2 | 486330cd1 | \([1, 0, 0, 2098150, 1610422500]\) | \(1021488070932591813813599/1711270653287130000000\) | \(-1711270653287130000000\) | \([7]\) | \(29042496\) | \(2.7593\) | \(\Gamma_0(N)\)-optimal |
486330.cd1 | 486330cd2 | \([1, 0, 0, -716997500, -7390008178230]\) | \(-40763985302355967860626447640001/1828646593831170189984570\) | \(-1828646593831170189984570\) | \([]\) | \(203297472\) | \(3.7323\) |
Rank
sage: E.rank()
The elliptic curves in class 486330cd have rank \(1\).
Complex multiplication
The elliptic curves in class 486330cd do not have complex multiplication.Modular form 486330.2.a.cd
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.