Learn more

Refine search


Results (1-50 of 114 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-$m$ images
486330.a1 486330.a \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $2$ $\Z/2\Z$ $4.044515666$ $[1, 1, 0, -202193, 34909077]$ \(y^2+xy=x^3+x^2-202193x+34909077\) 2.3.0.a.1, 116.6.0.?, 130.6.0.?, 7540.12.0.?
486330.a2 486330.a \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $2$ $\Z/2\Z$ $4.044515666$ $[1, 1, 0, -192913, 38270293]$ \(y^2+xy=x^3+x^2-192913x+38270293\) 2.3.0.a.1, 116.6.0.?, 260.6.0.?, 7540.12.0.?
486330.b1 486330.b \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $16.81964508$ $[1, 1, 0, -196227128, -1057121710272]$ \(y^2+xy=x^3+x^2-196227128x-1057121710272\) 2.3.0.a.1, 4.6.0.b.1, 290.6.0.?, 344.12.0.?, 580.12.0.?, $\ldots$
486330.b2 486330.b \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $8.409822541$ $[1, 1, 0, -148301048, -1586331070848]$ \(y^2+xy=x^3+x^2-148301048x-1586331070848\) 2.3.0.a.1, 4.6.0.a.1, 172.12.0.?, 580.12.0.?, 15080.24.0.?, $\ldots$
486330.c1 486330.c \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $20.47043279$ $[1, 1, 0, -40116938, -97816925532]$ \(y^2+xy=x^3+x^2-40116938x-97816925532\) 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 52.12.0-4.c.1.1, 172.12.0.?, $\ldots$
486330.c2 486330.c \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $5.117608199$ $[1, 1, 0, -2765418, -1195541628]$ \(y^2+xy=x^3+x^2-2765418x-1195541628\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 104.12.0.?, 172.12.0.?, $\ldots$
486330.c3 486330.c \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $10.23521639$ $[1, 1, 0, -2507418, -1529032428]$ \(y^2+xy=x^3+x^2-2507418x-1529032428\) 2.6.0.a.1, 12.12.0-2.a.1.1, 52.12.0-2.a.1.1, 156.24.0.?, 172.12.0.?, $\ldots$
486330.c4 486330.c \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $5.117608199$ $[1, 1, 0, -140698, -29005292]$ \(y^2+xy=x^3+x^2-140698x-29005292\) 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 52.12.0-4.c.1.2, 78.6.0.?, $\ldots$
486330.d1 486330.d \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $4.163564715$ $[1, 1, 0, -200337, -34579179]$ \(y^2+xy=x^3+x^2-200337x-34579179\) 2.3.0.a.1, 116.6.0.?, 130.6.0.?, 7540.12.0.?
486330.d2 486330.d \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $2.081782357$ $[1, 1, 0, -163217, -47741931]$ \(y^2+xy=x^3+x^2-163217x-47741931\) 2.3.0.a.1, 116.6.0.?, 260.6.0.?, 7540.12.0.?
486330.e1 486330.e \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $6.065044393$ $[1, 1, 0, -643413357, -6282055324899]$ \(y^2+xy=x^3+x^2-643413357x-6282055324899\) 2.3.0.a.1, 516.6.0.?, 3016.6.0.?, 389064.12.0.?
486330.e2 486330.e \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $3.032522196$ $[1, 1, 0, -40213357, -98169564899]$ \(y^2+xy=x^3+x^2-40213357x-98169564899\) 2.3.0.a.1, 258.6.0.?, 3016.6.0.?, 389064.12.0.?
486330.f1 486330.f \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -925277, 180345129]$ \(y^2+xy=x^3+x^2-925277x+180345129\) 2.3.0.a.1, 290.6.0.?, 516.6.0.?, 74820.12.0.?
486330.f2 486330.f \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 1, 0, -435177, -108715851]$ \(y^2+xy=x^3+x^2-435177x-108715851\) 2.3.0.a.1, 258.6.0.?, 580.6.0.?, 74820.12.0.?
486330.g1 486330.g \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $1.649641647$ $[1, 1, 0, -913302, 335565366]$ \(y^2+xy=x^3+x^2-913302x+335565366\) 2.3.0.a.1, 24.6.0.a.1, 4988.6.0.?, 29928.12.0.?
486330.g2 486330.g \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $3.299283295$ $[1, 1, 0, -56472, 5343084]$ \(y^2+xy=x^3+x^2-56472x+5343084\) 2.3.0.a.1, 24.6.0.d.1, 2494.6.0.?, 29928.12.0.?
486330.h1 486330.h \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $6.964317189$ $[1, 1, 0, -66219207, 200223880821]$ \(y^2+xy=x^3+x^2-66219207x+200223880821\) 2.3.0.a.1, 290.6.0.?, 516.6.0.?, 74820.12.0.?
486330.h2 486330.h \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $13.92863437$ $[1, 1, 0, 28889913, 728402867829]$ \(y^2+xy=x^3+x^2+28889913x+728402867829\) 2.3.0.a.1, 516.6.0.?, 580.6.0.?, 74820.12.0.?
486330.i1 486330.i \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\mathsf{trivial}$ $7.523042827$ $[1, 0, 1, 9301, -138274]$ \(y^2+xy+y=x^3+9301x-138274\) 1945320.2.0.?
486330.j1 486330.j \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -92148869, -326415508624]$ \(y^2+xy+y=x^3-92148869x-326415508624\) 2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 258.48.0.?, 580.6.0.?, $\ldots$
486330.j2 486330.j \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -15822149, 17573753072]$ \(y^2+xy+y=x^3-15822149x+17573753072\) 2.3.0.a.1, 3.8.0-3.a.1.1, 6.24.0-6.a.1.2, 290.6.0.?, 516.48.0.?, $\ldots$
486330.j3 486330.j \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -14605754, 21360820952]$ \(y^2+xy+y=x^3-14605754x+21360820952\) 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 258.48.0.?, 580.6.0.?, $\ldots$
486330.j4 486330.j \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $0$ $\Z/6\Z$ $1$ $[1, 0, 1, -14582534, 21432505736]$ \(y^2+xy+y=x^3-14582534x+21432505736\) 2.3.0.a.1, 3.8.0-3.a.1.2, 6.24.0-6.a.1.4, 290.6.0.?, 516.48.0.?, $\ldots$
486330.k1 486330.k \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $4.383556534$ $[1, 0, 1, -163756684, 806564838482]$ \(y^2+xy+y=x^3-163756684x+806564838482\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 12.12.0-4.c.1.1, 24.24.0-24.s.1.4, $\ldots$
486330.k2 486330.k \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z\oplus\Z/2\Z$ $2.191778267$ $[1, 0, 1, -10257364, 12543555986]$ \(y^2+xy+y=x^3-10257364x+12543555986\) 2.6.0.a.1, 8.12.0-2.a.1.1, 12.12.0-2.a.1.1, 24.24.0-24.b.1.2, 172.12.0.?, $\ldots$
486330.k3 486330.k \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $4.383556534$ $[1, 0, 1, -2990364, 29972728786]$ \(y^2+xy+y=x^3-2990364x+29972728786\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 24.24.0-24.y.1.8, 172.12.0.?, $\ldots$
486330.k4 486330.k \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $1.095889133$ $[1, 0, 1, -1117844, -134786158]$ \(y^2+xy+y=x^3-1117844x-134786158\) 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 12.12.0-4.c.1.2, 24.24.0-24.y.1.2, $\ldots$
486330.l1 486330.l \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $0.484242239$ $[1, 0, 1, -536153, 79373756]$ \(y^2+xy+y=x^3-536153x+79373756\) 2.3.0.a.1, 258.6.0.?, 1160.6.0.?, 149640.12.0.?
486330.l2 486330.l \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $0.968484478$ $[1, 0, 1, 1783847, 583277756]$ \(y^2+xy+y=x^3+1783847x+583277756\) 2.3.0.a.1, 516.6.0.?, 1160.6.0.?, 149640.12.0.?
486330.m1 486330.m \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -58901863, -150158646934]$ \(y^2+xy+y=x^3-58901863x-150158646934\) 2.3.0.a.1, 40.6.0.b.1, 516.6.0.?, 5160.12.0.?
486330.m2 486330.m \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -15842663, 21957587306]$ \(y^2+xy+y=x^3-15842663x+21957587306\) 2.3.0.a.1, 40.6.0.c.1, 258.6.0.?, 5160.12.0.?
486330.n1 486330.n \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $3.020201243$ $[1, 0, 1, -22953648, -42329284994]$ \(y^2+xy+y=x^3-22953648x-42329284994\) 2.3.0.a.1, 116.6.0.?, 258.6.0.?, 14964.12.0.?
486330.n2 486330.n \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $1.510100621$ $[1, 0, 1, -22359728, -44623241602]$ \(y^2+xy+y=x^3-22359728x-44623241602\) 2.3.0.a.1, 116.6.0.?, 516.6.0.?, 14964.12.0.?
486330.o1 486330.o \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $0.348048388$ $[1, 0, 1, -223423, 40628606]$ \(y^2+xy+y=x^3-223423x+40628606\) 2.3.0.a.1, 258.6.0.?, 580.6.0.?, 74820.12.0.?
486330.o2 486330.o \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $0.696096777$ $[1, 0, 1, -14443, 588038]$ \(y^2+xy+y=x^3-14443x+588038\) 2.3.0.a.1, 290.6.0.?, 516.6.0.?, 74820.12.0.?
486330.p1 486330.p \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $2$ $\Z/2\Z$ $0.430967719$ $[1, 0, 1, -34373, 2405756]$ \(y^2+xy+y=x^3-34373x+2405756\) 2.3.0.a.1, 258.6.0.?, 1160.6.0.?, 149640.12.0.?
486330.p2 486330.p \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $2$ $\Z/2\Z$ $1.723870879$ $[1, 0, 1, 1877, 7234256]$ \(y^2+xy+y=x^3+1877x+7234256\) 2.3.0.a.1, 516.6.0.?, 1160.6.0.?, 149640.12.0.?
486330.q1 486330.q \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -18583228, -30835775494]$ \(y^2+xy+y=x^3-18583228x-30835775494\) 972660.2.0.?
486330.r1 486330.r \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 572, -1534]$ \(y^2+xy+y=x^3+572x-1534\) 972660.2.0.?
486330.s1 486330.s \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, 4922, 593048]$ \(y^2+xy+y=x^3+4922x+593048\) 972660.2.0.?
486330.t1 486330.t \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $0$ $\mathsf{trivial}$ $1$ $[1, 0, 1, -4401483, -3554821742]$ \(y^2+xy+y=x^3-4401483x-3554821742\) 12470.2.0.?
486330.u1 486330.u \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\mathsf{trivial}$ $0.208583678$ $[1, 0, 1, 12397, -161494]$ \(y^2+xy+y=x^3+12397x-161494\) 12470.2.0.?
486330.v1 486330.v \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\mathsf{trivial}$ $1.373991805$ $[1, 0, 1, -3513, 462076]$ \(y^2+xy+y=x^3-3513x+462076\) 1945320.2.0.?
486330.w1 486330.w \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -16153, 788756]$ \(y^2+xy+y=x^3-16153x+788756\) 2.3.0.a.1, 516.6.0.?, 3016.6.0.?, 389064.12.0.?
486330.w2 486330.w \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $0$ $\Z/2\Z$ $1$ $[1, 0, 1, -1073, 10628]$ \(y^2+xy+y=x^3-1073x+10628\) 2.3.0.a.1, 258.6.0.?, 3016.6.0.?, 389064.12.0.?
486330.x1 486330.x \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\mathsf{trivial}$ $2.040164466$ $[1, 0, 1, -1573, -26494]$ \(y^2+xy+y=x^3-1573x-26494\) 1945320.2.0.?
486330.y1 486330.y \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $2.272818645$ $[1, 1, 1, -136, -391]$ \(y^2+xy+y=x^3+x^2-136x-391\) 2.3.0.a.1, 116.6.0.?, 16770.6.0.?, 972660.12.0.?
486330.y2 486330.y \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $1.136409322$ $[1, 1, 1, 444, -2247]$ \(y^2+xy+y=x^3+x^2+444x-2247\) 2.3.0.a.1, 116.6.0.?, 33540.6.0.?, 972660.12.0.?
486330.z1 486330.z \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $1.038051167$ $[1, 1, 1, -340596, 49572789]$ \(y^2+xy+y=x^3+x^2-340596x+49572789\) 2.3.0.a.1, 4.6.0.b.1, 290.6.0.?, 580.12.0.?, 1032.12.0.?, $\ldots$
486330.z2 486330.z \( 2 \cdot 3 \cdot 5 \cdot 13 \cdot 29 \cdot 43 \) $1$ $\Z/2\Z$ $2.076102335$ $[1, 1, 1, 990684, 343519413]$ \(y^2+xy+y=x^3+x^2+990684x+343519413\) 2.3.0.a.1, 4.6.0.a.1, 580.12.0.?, 1032.12.0.?, 15080.24.0.?, $\ldots$
Next   displayed columns for results