Properties

Label 485520.hz
Number of curves $4$
Conductor $485520$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("hz1")
 
E.isogeny_class()
 

Elliptic curves in class 485520.hz

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
485520.hz1 485520hz4 \([0, 1, 0, -7796160, -8380796940]\) \(530044731605089/26309115\) \(2601115970115317760\) \([2]\) \(18874368\) \(2.6049\)  
485520.hz2 485520hz3 \([0, 1, 0, -2478560, 1395356340]\) \(17032120495489/1339001685\) \(132383725825244221440\) \([4]\) \(18874368\) \(2.6049\) \(\Gamma_0(N)\)-optimal*
485520.hz3 485520hz2 \([0, 1, 0, -513360, -116275500]\) \(151334226289/28676025\) \(2835126403412889600\) \([2, 2]\) \(9437184\) \(2.2583\) \(\Gamma_0(N)\)-optimal*
485520.hz4 485520hz1 \([0, 1, 0, 64640, -10617100]\) \(302111711/669375\) \(-66179421181440000\) \([2]\) \(4718592\) \(1.9118\) \(\Gamma_0(N)\)-optimal*
*optimality has not been determined rigorously for conductors over 400000. In this case the optimal curve is certainly one of the 0 curves highlighted, and conditionally curve 485520.hz1.

Rank

sage: E.rank()
 

The elliptic curves in class 485520.hz have rank \(1\).

Complex multiplication

The elliptic curves in class 485520.hz do not have complex multiplication.

Modular form 485520.2.a.hz

sage: E.q_eigenform(10)
 
\(q + q^{3} + q^{5} + q^{7} + q^{9} - 6 q^{13} + q^{15} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.