Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3-x^2-131880x-18369600\)
|
(homogenize, simplify) |
|
\(y^2z=x^3-x^2z-131880xz^2-18369600z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-10682307x-13423485294\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(550, 8670)$ | $1.8989369562650770627060028839$ | $\infty$ |
| $(-215, 0)$ | $0$ | $2$ |
Integral points
\( \left(-215, 0\right) \), \((550,\pm 8670)\)
Invariants
| Conductor: | $N$ | = | \( 485520 \) | = | $2^{4} \cdot 3 \cdot 5 \cdot 7 \cdot 17^{2}$ |
|
| Discriminant: | $\Delta$ | = | $324408927360000$ | = | $2^{10} \cdot 3 \cdot 5^{4} \cdot 7 \cdot 17^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{10262905636}{13125} \) | = | $2^{2} \cdot 3^{-1} \cdot 5^{-4} \cdot 7^{-1} \cdot 37^{6}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.6923192341987754427334250385$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.30191008829595368857236903832$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0947885529352885$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.588378575375355$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.8989369562650770627060028839$ |
|
| Real period: | $\Omega$ | ≈ | $0.25054624440486949003926913140$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2^{2}\cdot1\cdot2^{2}\cdot1\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $7.6123443640612634165008825417 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 7.612344364 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.250546 \cdot 1.898937 \cdot 64}{2^2} \\ & \approx 7.612344364\end{aligned}$$
Modular invariants
Modular form 485520.2.a.dh
For more coefficients, see the Downloads section to the right.
| Modular degree: | 2621440 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{2}^{*}$ | additive | 1 | 4 | 10 | 0 |
| $3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $5$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $7$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $17$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 14280 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 17 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 9757 & 13124 \\ 6358 & 8499 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 5879 & 0 \\ 0 & 14279 \end{array}\right),\left(\begin{array}{rr} 14273 & 8 \\ 14272 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 11204 & 10081 \\ 8143 & 7566 \end{array}\right),\left(\begin{array}{rr} 5288 & 1683 \\ 9605 & 10082 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 14179 & 14178 \\ 11458 & 6835 \end{array}\right),\left(\begin{array}{rr} 2857 & 9248 \\ 8908 & 8433 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 14274 & 14275 \end{array}\right)$.
The torsion field $K:=\Q(E[14280])$ is a degree-$116435221217280$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/14280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 6069 = 3 \cdot 7 \cdot 17^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 161840 = 2^{4} \cdot 5 \cdot 7 \cdot 17^{2} \) |
| $5$ | split multiplicative | $6$ | \( 97104 = 2^{4} \cdot 3 \cdot 7 \cdot 17^{2} \) |
| $7$ | split multiplicative | $8$ | \( 69360 = 2^{4} \cdot 3 \cdot 5 \cdot 17^{2} \) |
| $17$ | additive | $146$ | \( 1680 = 2^{4} \cdot 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 485520.dh
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 840.b1, its twist by $-68$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.