Properties

Label 48400.s
Number of curves 2
Conductor 48400
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("48400.s1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 48400.s

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
48400.s1 48400ck2 [0, 1, 0, -8928, -327692] [] 41472  
48400.s2 48400ck1 [0, 1, 0, -128, -332] [] 13824 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 48400.s have rank \(1\).

Modular form 48400.2.a.s

sage: E.q_eigenform(10)
 
\( q - 2q^{3} + q^{7} + q^{9} - 4q^{13} - 6q^{17} + 2q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.