Properties

Label 48400.r
Number of curves 2
Conductor 48400
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath
sage: E = EllipticCurve("48400.r1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 48400.r

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
48400.r1 48400de2 [0, 1, 0, -5107208, 4438969588] [2] 1382400  
48400.r2 48400de1 [0, 1, 0, -267208, 92649588] [2] 691200 \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 48400.r have rank \(0\).

Modular form 48400.2.a.r

sage: E.q_eigenform(10)
 
\( q - 2q^{3} + q^{9} + 2q^{13} - 6q^{17} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.