Properties

Label 4840.i
Number of curves $1$
Conductor $4840$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
sage: E = EllipticCurve("i1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 4840.i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4840.i1 4840i1 \([0, 0, 0, -8107, 300806]\) \(-16241202/1375\) \(-4988715776000\) \([]\) \(17280\) \(1.1815\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curve 4840.i1 has rank \(0\).

Complex multiplication

The elliptic curves in class 4840.i do not have complex multiplication.

Modular form 4840.2.a.i

sage: E.q_eigenform(10)
 
\(q + 3 q^{3} + q^{5} - q^{7} + 6 q^{9} + 6 q^{13} + 3 q^{15} - 3 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display