Minimal Weierstrass equation
\(y^2+xy+y=x^3-220203x+39754006\)
Mordell-Weil group structure
$\Z\times \Z/{2}\Z$
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(280, 122\right)\)
|
$\hat{h}(P)$ | ≈ | $0.93552622048218498129324039836$ |
Torsion generators
\( \left(271, -136\right) \)
Integral points
\( \left(271, -136\right) \), \( \left(280, 122\right) \), \( \left(280, -403\right) \), \( \left(2575, 127352\right) \), \( \left(2575, -129928\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 4830 \) | = | $2 \cdot 3 \cdot 5 \cdot 7 \cdot 23$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $692428800000 $ | = | $2^{16} \cdot 3 \cdot 5^{5} \cdot 7^{2} \cdot 23 $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{1180838681727016392361}{692428800000} \) | = | $2^{-16} \cdot 3^{-1} \cdot 5^{-5} \cdot 7^{-2} \cdot 23^{-1} \cdot 10569721^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $1.5960933502003106570038141763\dots$ | ||
Stable Faltings height: | $1.5960933502003106570038141763\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $0.93552622048218498129324039836\dots$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $0.74561892706306782493295441413\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 20 $ = $ 2\cdot1\cdot5\cdot2\cdot1 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $2$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 3.4877302837764689613046996632 $ |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 30720 | ||
$ \Gamma_0(N) $-optimal: | yes | ||
Manin constant: | 1 |
Local data
This elliptic curve is semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{16}$ | Non-split multiplicative | 1 | 1 | 16 | 16 |
$3$ | $1$ | $I_{1}$ | Split multiplicative | -1 | 1 | 1 | 1 |
$5$ | $5$ | $I_{5}$ | Split multiplicative | -1 | 1 | 5 | 5 |
$7$ | $2$ | $I_{2}$ | Split multiplicative | -1 | 1 | 2 | 2 |
$23$ | $1$ | $I_{1}$ | Split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.6 |
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | split | split | split | ord | ord | ord | ss | split | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | 2 | 2 | 4 | 4 | 1 | 1 | 1 | 1,1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 4830q
consists of 4 curves linked by isogenies of
degrees dividing 4.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{345}) \) | \(\Z/2\Z \times \Z/2\Z\) | Not in database |
$2$ | \(\Q(\sqrt{69}) \) | \(\Z/4\Z\) | Not in database |
$2$ | \(\Q(\sqrt{5}) \) | \(\Z/4\Z\) | Not in database |
$4$ | \(\Q(\sqrt{5}, \sqrt{69})\) | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$4$ | 4.4.80484705.1 | \(\Z/8\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/2\Z \times \Z/4\Z\) | Not in database |
$8$ | 8.0.19044000000.2 | \(\Z/8\Z\) | Not in database |
$8$ | 8.8.161944693473425625.1 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$8$ | Deg 8 | \(\Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/4\Z \times \Z/4\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/8\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/16\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \times \Z/6\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/12\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.