Minimal Weierstrass equation
Minimal equation
Minimal equation
Simplified equation
\(y^2+xy=x^3-1141x+44321\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-1141xz^2+44321z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1478763x+2072276838\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Infinite order Mordell-Weil generator and height
$P$ | = |
\(\left(8, 185\right)\)
|
$\hat{h}(P)$ | ≈ | $0.31740833233875293497377028291$ |
Torsion generators
\( \left(26, 167\right) \)
Integral points
\( \left(-46, 23\right) \), \( \left(-34, 227\right) \), \( \left(-34, -193\right) \), \( \left(-14, 247\right) \), \( \left(-14, -233\right) \), \( \left(-10, 239\right) \), \( \left(-10, -229\right) \), \( \left(8, 185\right) \), \( \left(8, -193\right) \), \( \left(26, 167\right) \), \( \left(26, -193\right) \), \( \left(50, 311\right) \), \( \left(50, -361\right) \), \( \left(98, 887\right) \), \( \left(98, -985\right) \), \( \left(116, 1157\right) \), \( \left(116, -1273\right) \), \( \left(386, 7367\right) \), \( \left(386, -7753\right) \), \( \left(554, 12743\right) \), \( \left(554, -13297\right) \), \( \left(14066, 1661207\right) \), \( \left(14066, -1675273\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 4830 \) | = | $2 \cdot 3 \cdot 5 \cdot 7 \cdot 23$ |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | $-757170892800 $ | = | $-1 \cdot 2^{12} \cdot 3^{8} \cdot 5^{2} \cdot 7^{2} \cdot 23 $ |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{164287467238609}{757170892800} \) | = | $-1 \cdot 2^{-12} \cdot 3^{-8} \cdot 5^{-2} \cdot 7^{-2} \cdot 11^{3} \cdot 13^{3} \cdot 23^{-1} \cdot 383^{3}$ |
Endomorphism ring: | $\Z$ | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ | ||
Faltings height: | $0.96413422269230153213547638457\dots$ | ||
Stable Faltings height: | $0.96413422269230153213547638457\dots$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
| |||
Analytic rank: | $1$ | ||
sage: E.regulator()
magma: Regulator(E);
| |||
Regulator: | $0.31740833233875293497377028291\dots$ | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
| |||
Real period: | $0.78114409035795583736095163298\dots$ | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
| |||
Tamagawa product: | $ 384 $ = $ ( 2^{2} \cdot 3 )\cdot2^{3}\cdot2\cdot2\cdot1 $ | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
| |||
Torsion order: | $4$ | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
| |||
Analytic order of Ш: | $1$ (exact) | ||
sage: r = E.rank();
gp: ar = ellanalyticrank(E);
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
| |||
Special value: | $ L'(E,1) $ ≈ $ 5.9505994328829815643018358023 $ |
Modular invariants
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 9216 | ||
$ \Gamma_0(N) $-optimal: | yes | ||
Manin constant: | 1 |
Local data
This elliptic curve is semistable. There are 5 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord($N$) | ord($\Delta$) | ord$(j)_{-}$ |
---|---|---|---|---|---|---|---|
$2$ | $12$ | $I_{12}$ | Split multiplicative | -1 | 1 | 12 | 12 |
$3$ | $8$ | $I_{8}$ | Split multiplicative | -1 | 1 | 8 | 8 |
$5$ | $2$ | $I_{2}$ | Non-split multiplicative | 1 | 1 | 2 | 2 |
$7$ | $2$ | $I_{2}$ | Non-split multiplicative | 1 | 1 | 2 | 2 |
$23$ | $1$ | $I_{1}$ | Non-split multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.24.0.50 |
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | split | nonsplit | nonsplit | ss | ord | ord | ss | nonsplit | ord | ord | ord | ord | ss | ord |
$\lambda$-invariant(s) | 4 | 2 | 1 | 1 | 1,1 | 1 | 3 | 1,1 | 1 | 3 | 1 | 1 | 1 | 1,1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 4830ba
consists of 4 curves linked by isogenies of
degrees dividing 4.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-23}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | Not in database |
$4$ | 4.2.36800.3 | \(\Z/8\Z\) | Not in database |
$8$ | 8.0.56869467118240000.26 | \(\Z/4\Z \oplus \Z/4\Z\) | Not in database |
$8$ | 8.0.716392960000.7 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$8$ | 8.0.1455858358226944.43 | \(\Z/2\Z \oplus \Z/8\Z\) | Not in database |
$8$ | 8.2.74390473561516875.1 | \(\Z/12\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/16\Z\) | Not in database |
$16$ | Deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | Not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.