Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3+x^2-94864910x+355585610315\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3+x^2z-94864910xz^2+355585610315z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-122944923387x+16592046408715734\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(5693, 5623)$ | $0.61762289635451323980181304223$ | $\infty$ |
| $(4923, 86473)$ | $0.88220632350659380855041880512$ | $\infty$ |
| $(-11247, 5623)$ | $0$ | $2$ |
| $(5649, -2825)$ | $0$ | $2$ |
Integral points
\( \left(-11247, 5623\right) \), \( \left(-9247, 669623\right) \), \( \left(-9247, -660377\right) \), \( \left(-7047, 824623\right) \), \( \left(-7047, -817577\right) \), \( \left(-5967, 845143\right) \), \( \left(-5967, -839177\right) \), \( \left(-3547, 806423\right) \), \( \left(-3547, -802877\right) \), \( \left(-495, 634615\right) \), \( \left(-495, -634121\right) \), \( \left(303, 571573\right) \), \( \left(303, -571877\right) \), \( \left(2305, 385079\right) \), \( \left(2305, -387385\right) \), \( \left(3273, 281503\right) \), \( \left(3273, -284777\right) \), \( \left(3915, 208315\right) \), \( \left(3915, -212231\right) \), \( \left(4433, 146743\right) \), \( \left(4433, -151177\right) \), \( \left(4923, 86473\right) \), \( \left(4923, -91397\right) \), \( \left(5385, 27799\right) \), \( \left(5385, -33185\right) \), \( \left(5553, 5623\right) \), \( \left(5553, -11177\right) \), \( \left(5573, 2723\right) \), \( \left(5573, -8297\right) \), \( \left(5649, -2825\right) \), \( \left(5653, -877\right) \), \( \left(5653, -4777\right) \), \( \left(5693, 5623\right) \), \( \left(5693, -11317\right) \), \( \left(5763, 15073\right) \), \( \left(5763, -20837\right) \), \( \left(6353, 93623\right) \), \( \left(6353, -99977\right) \), \( \left(6903, 168973\right) \), \( \left(6903, -175877\right) \), \( \left(8353, 378023\right) \), \( \left(8353, -386377\right) \), \( \left(9753, 593623\right) \), \( \left(9753, -603377\right) \), \( \left(13393, 1212983\right) \), \( \left(13393, -1226377\right) \), \( \left(25713, 3849463\right) \), \( \left(25713, -3875177\right) \), \( \left(42653, 8575723\right) \), \( \left(42653, -8618377\right) \), \( \left(56513, 13218823\right) \), \( \left(56513, -13275337\right) \), \( \left(131049, 47247895\right) \), \( \left(131049, -47378945\right) \), \( \left(226353, 107480023\right) \), \( \left(226353, -107706377\right) \), \( \left(472593, 324581623\right) \), \( \left(472593, -325054217\right) \)
Invariants
| Conductor: | $N$ | = | \( 482790 \) | = | $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \cdot 19$ |
|
| Discriminant: | $\Delta$ | = | $3537838042953984000000$ | = | $2^{14} \cdot 3^{2} \cdot 5^{6} \cdot 7^{4} \cdot 11^{6} \cdot 19^{2} $ |
|
| j-invariant: | $j$ | = | \( \frac{53294746224000958661881}{1997017344000000} \) | = | $2^{-14} \cdot 3^{-2} \cdot 5^{-6} \cdot 7^{-4} \cdot 13^{3} \cdot 19^{-2} \cdot 79^{3} \cdot 36643^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $3.2213211239637216886612909880$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $2.0223734875645364166303191990$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0082885109963067$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.097866438622275$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.53396406659321712172850016438$ |
|
| Real period: | $\Omega$ | ≈ | $0.13165334041246727684325946487$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 5376 $ = $ ( 2 \cdot 7 )\cdot2\cdot( 2 \cdot 3 )\cdot2^{2}\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $23.620179417146645726601848358 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 23.620179417 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.131653 \cdot 0.533964 \cdot 5376}{4^2} \\ & \approx 23.620179417\end{aligned}$$
Modular invariants
Modular form 482790.2.a.fw
For more coefficients, see the Downloads section to the right.
| Modular degree: | 68812800 |
|
| $ \Gamma_0(N) $-optimal: | not computed* (one of 3 curves in this isogeny class which might be optimal) | |
| Manin constant: | 1 (conditional*) |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 6 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $14$ | $I_{14}$ | split multiplicative | -1 | 1 | 14 | 14 |
| $3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $5$ | $6$ | $I_{6}$ | split multiplicative | -1 | 1 | 6 | 6 |
| $7$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
| $11$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
| $19$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2Cs | 2.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 25080 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \cdot 19 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 25077 & 4 \\ 25076 & 5 \end{array}\right),\left(\begin{array}{rr} 22441 & 13684 \\ 1562 & 2289 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6271 & 6842 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 16721 & 6842 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 12541 & 6842 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 21891 & 6842 \\ 8206 & 18239 \end{array}\right),\left(\begin{array}{rr} 15959 & 0 \\ 0 & 25079 \end{array}\right)$.
The torsion field $K:=\Q(E[25080])$ is a degree-$1198215659520000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/25080\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 121 = 11^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 32186 = 2 \cdot 7 \cdot 11^{2} \cdot 19 \) |
| $5$ | split multiplicative | $6$ | \( 96558 = 2 \cdot 3 \cdot 7 \cdot 11^{2} \cdot 19 \) |
| $7$ | split multiplicative | $8$ | \( 34485 = 3 \cdot 5 \cdot 11^{2} \cdot 19 \) |
| $11$ | additive | $62$ | \( 3990 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 19 \) |
| $19$ | split multiplicative | $20$ | \( 25410 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 482790.fw
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 3990.g3, its twist by $-11$.
Iwasawa invariants
No Iwasawa invariant data is available for this curve.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.