Show commands for:
SageMath
sage: E = EllipticCurve("4800.bz1")
sage: E.isogeny_class()
Elliptic curves in class 4800cd
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
4800.bz7 | 4800cd1 | [0, 1, 0, -33, -11937] | [2] | 3072 | \(\Gamma_0(N)\)-optimal |
4800.bz6 | 4800cd2 | [0, 1, 0, -8033, -275937] | [2, 2] | 6144 | |
4800.bz4 | 4800cd3 | [0, 1, 0, -128033, -17675937] | [2] | 12288 | |
4800.bz5 | 4800cd4 | [0, 1, 0, -16033, 356063] | [2, 2] | 12288 | |
4800.bz2 | 4800cd5 | [0, 1, 0, -216033, 38556063] | [2, 2] | 24576 | |
4800.bz8 | 4800cd6 | [0, 1, 0, 55967, 2732063] | [2] | 24576 | |
4800.bz1 | 4800cd7 | [0, 1, 0, -3456033, 2471796063] | [2] | 49152 | |
4800.bz3 | 4800cd8 | [0, 1, 0, -176033, 53316063] | [2] | 49152 |
Rank
sage: E.rank()
The elliptic curves in class 4800cd have rank \(1\).
Modular form 4800.2.a.bz
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 8 & 8 & 16 & 16 \\ 4 & 2 & 4 & 1 & 2 & 2 & 4 & 4 \\ 8 & 4 & 8 & 2 & 1 & 4 & 2 & 2 \\ 8 & 4 & 8 & 2 & 4 & 1 & 8 & 8 \\ 16 & 8 & 16 & 4 & 2 & 8 & 1 & 4 \\ 16 & 8 & 16 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.