Show commands for:
SageMath
sage: E = EllipticCurve("4800.t1")
sage: E.isogeny_class()
Elliptic curves in class 4800b
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
4800.t7 | 4800b1 | [0, -1, 0, -33, 11937] | [2] | 3072 | \(\Gamma_0(N)\)-optimal |
4800.t6 | 4800b2 | [0, -1, 0, -8033, 275937] | [2, 2] | 6144 | |
4800.t5 | 4800b3 | [0, -1, 0, -16033, -356063] | [2, 2] | 12288 | |
4800.t4 | 4800b4 | [0, -1, 0, -128033, 17675937] | [2] | 12288 | |
4800.t2 | 4800b5 | [0, -1, 0, -216033, -38556063] | [2, 2] | 24576 | |
4800.t8 | 4800b6 | [0, -1, 0, 55967, -2732063] | [2] | 24576 | |
4800.t1 | 4800b7 | [0, -1, 0, -3456033, -2471796063] | [2] | 49152 | |
4800.t3 | 4800b8 | [0, -1, 0, -176033, -53316063] | [2] | 49152 |
Rank
sage: E.rank()
The elliptic curves in class 4800b have rank \(1\).
Modular form 4800.2.a.t
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 4 & 4 & 8 & 8 & 16 & 16 \\ 2 & 1 & 2 & 2 & 4 & 4 & 8 & 8 \\ 4 & 2 & 1 & 4 & 2 & 2 & 4 & 4 \\ 4 & 2 & 4 & 1 & 8 & 8 & 16 & 16 \\ 8 & 4 & 2 & 8 & 1 & 4 & 2 & 2 \\ 8 & 4 & 2 & 8 & 4 & 1 & 8 & 8 \\ 16 & 8 & 4 & 16 & 2 & 8 & 1 & 4 \\ 16 & 8 & 4 & 16 & 2 & 8 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.