Properties

Label 4800.cq1
Conductor 4800
Discriminant 331776000000000
j-invariant \( \frac{16778985534208729}{81000} \)
CM no
Rank 0
Torsion Structure \(\Z/{2}\Z\)

Related objects

Downloads

Learn more about

Show commands for: Magma / Pari/GP / SageMath

Minimal Weierstrass equation

sage: E = EllipticCurve([0, 1, 0, -8533633, -9597935137]) # or
 
sage: E = EllipticCurve("4800w7")
 
gp: E = ellinit([0, 1, 0, -8533633, -9597935137]) \\ or
 
gp: E = ellinit("4800w7")
 
magma: E := EllipticCurve([0, 1, 0, -8533633, -9597935137]); // or
 
magma: E := EllipticCurve("4800w7");
 

\( y^2 = x^{3} + x^{2} - 8533633 x - 9597935137 \)

Mordell-Weil group structure

\(\Z/{2}\Z\)

Torsion generators

sage: E.torsion_subgroup().gens()
 
gp: elltors(E)
 
magma: TorsionSubgroup(E);
 

\( \left(-1687, 0\right) \)

Integral points

sage: E.integral_points()
 
magma: IntegralPoints(E);
 

\( \left(-1687, 0\right) \)

Invariants

sage: E.conductor().factor()
 
gp: ellglobalred(E)[1]
 
magma: Conductor(E);
 
Conductor: \( 4800 \)  =  \(2^{6} \cdot 3 \cdot 5^{2}\)
sage: E.discriminant().factor()
 
gp: E.disc
 
magma: Discriminant(E);
 
Discriminant: \(331776000000000 \)  =  \(2^{21} \cdot 3^{4} \cdot 5^{9} \)
sage: E.j_invariant().factor()
 
gp: E.j
 
magma: jInvariant(E);
 
j-invariant: \( \frac{16778985534208729}{81000} \)  =  \(2^{-3} \cdot 3^{-4} \cdot 5^{-3} \cdot 13^{3} \cdot 47^{3} \cdot 419^{3}\)
Endomorphism ring: \(\Z\)   (no Complex Multiplication)
Sato-Tate Group: $\mathrm{SU}(2)$

BSD invariants

sage: E.rank()
 
magma: Rank(E);
 
Rank: \(0\)
sage: E.regulator()
 
magma: Regulator(E);
 
Regulator: \(1\)
sage: E.period_lattice().omega()
 
gp: E.omega[1]
 
magma: RealPeriod(E);
 
Real period: \(0.0883315924853\)
sage: E.tamagawa_numbers()
 
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
magma: TamagawaNumbers(E);
 
Tamagawa product: \( 16 \)  = \( 2\cdot2^{2}\cdot2 \)
sage: E.torsion_order()
 
gp: elltors(E)[1]
 
magma: Order(TorsionSubgroup(E));
 
Torsion order: \(2\)
sage: E.sha().an_numerical()
 
magma: MordellWeilShaInformation(E);
 
Analytic order of Ш: \(9\) (exact)

Modular invariants

Modular form 4800.2.a.cq

sage: E.q_eigenform(20)
 
gp: xy = elltaniyama(E);
 
gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)
 
magma: ModularForm(E);
 

\( q + q^{3} + 4q^{7} + q^{9} + 2q^{13} - 6q^{17} + 4q^{19} + O(q^{20}) \)

For more coefficients, see the Downloads section to the right.

sage: E.modular_degree()
 
magma: ModularDegree(E);
 
Modular degree: 110592
\( \Gamma_0(N) \)-optimal: no
Manin constant: 1

Special L-value

sage: r = E.rank();
 
sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
gp: ar = ellanalyticrank(E);
 
gp: ar[2]/factorial(ar[1])
 
magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 

\( L(E,1) \) ≈ \( 3.17993732947 \)

Local data

This elliptic curve is not semistable.

sage: E.local_data()
 
gp: ellglobalred(E)[5]
 
magma: [LocalInformation(E,p) : p in BadPrimes(E)];
 
prime Tamagawa number Kodaira symbol Reduction type Root number ord(\(N\)) ord(\(\Delta\)) ord\((j)_{-}\)
\(2\) \(2\) \( I_11^{*} \) Additive 1 6 21 3
\(3\) \(4\) \( I_{4} \) Split multiplicative -1 1 4 4
\(5\) \(2\) \( I_3^{*} \) Additive 1 2 9 3

Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X13g.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 1 & 1 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 5 & 5 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$ and has index 12.

sage: rho = E.galois_representation();
 
sage: [rho.image_type(p) for p in rho.non_surjective()]
 
magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.

prime Image of Galois representation
\(2\) B
\(3\) B

$p$-adic data

$p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(3,20) if E.conductor().valuation(p)<2]
 

All \(p\)-adic regulators are identically \(1\) since the rank is \(0\).

Iwasawa invariants

$p$ 2 3 5
Reduction type add split add
$\lambda$-invariant(s) - 3 -
$\mu$-invariant(s) - 1 -

All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.

An entry - indicates that the invariants are not computed because the reduction is additive.

Isogenies

This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\) 2, 3, 4, 6 and 12.
Its isogeny class 4800.cq consists of 8 curves linked by isogenies of degrees dividing 12.

Growth of torsion in number fields

The number fields $K$ of degree up to 7 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:

$[K:\Q]$ $K$ $E(K)_{\rm tors}$ Base-change curve
2 \(\Q(\sqrt{-2}) \) \(\Z/4\Z\) Not in database
\(\Q(\sqrt{-5}) \) \(\Z/4\Z\) Not in database
\(\Q(\sqrt{10}) \) \(\Z/2\Z \times \Z/2\Z\) 2.2.40.1-90.1-f11
\(\Q(\sqrt{-30}) \) \(\Z/6\Z\) Not in database
4 \(\Q(\sqrt{-2}, \sqrt{-5})\) \(\Z/2\Z \times \Z/4\Z\) Not in database
\(\Q(\sqrt{-3}, \sqrt{10})\) \(\Z/2\Z \times \Z/6\Z\) Not in database
\(\Q(\sqrt{-2}, \sqrt{15})\) \(\Z/12\Z\) Not in database
\(\Q(\sqrt{-5}, \sqrt{6})\) \(\Z/12\Z\) Not in database
6 6.2.3779136000.5 \(\Z/2\Z \times \Z/6\Z\) Not in database

We only show fields where the torsion growth is primitive. For each field $K$ we either show its label, or a defining polynomial when $K$ is not in the database.