Minimal Weierstrass equation
\(y^2=x^3-8258455884x+3317952650942608\)
Mordell-Weil group structure
\(\Z\times \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
\(P\) | = | \( \left(\frac{203172582019721618796849}{2820975439001440900}, \frac{263664858578701305451616881858657993}{4738042559307020931015173000}\right) \) |
\(\hat{h}(P)\) | ≈ | $51.509283049752786219389613506$ |
Torsion generators
\( \left(-167524, 0\right) \)
Integral points
\( \left(-167524, 0\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 479808 \) | = | \(2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 17\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(-4719758216173604166756801227784192 \) | = | \(-1 \cdot 2^{21} \cdot 3^{38} \cdot 7^{8} \cdot 17^{2} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( -\frac{2770540998624539614657}{209924951154647363208} \) | = | \(-1 \cdot 2^{-3} \cdot 3^{-32} \cdot 7^{-2} \cdot 17^{-2} \cdot 383^{3} \cdot 36671^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(1\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(51.509283049752786219389613506\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.011313586968407904361364826045\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 64 \) = \( 2^{2}\cdot2^{2}\cdot2\cdot2 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(2\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
Modular form 479808.2.a.ni
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 2264924160 | ||
\( \Gamma_0(N) \)-optimal: | no | ||
Manin constant: | 1 (conditional*) |
Special L-value
\( L'(E,1) \) ≈ \( 9.3240760554194764640023326361805245781 \)
Local data
This elliptic curve is semistable. There are 4 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(4\) | \(I_{11}^{*}\) | Additive | -1 | 6 | 21 | 3 |
\(3\) | \(4\) | \(I_{32}^{*}\) | Additive | -1 | 2 | 38 | 32 |
\(7\) | \(2\) | \(I_2^{*}\) | Additive | -1 | 2 | 8 | 2 |
\(17\) | \(2\) | \(I_{2}\) | Split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X217.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^4\Z_2)$ generated by $\left(\begin{array}{rr} 7 & 7 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 8 & 3 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 0 & 3 \end{array}\right)$ and has index 48.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | B |
$p$-adic data
$p$-adic regulators
\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2, 4 and 8.
Its isogeny class 479808ni
consists of 4 curves linked by isogenies of
degrees dividing 8.