# Properties

 Label 479808.nz2 Conductor $479808$ Discriminant $3.246\times 10^{23}$ j-invariant $$\frac{34623662831857}{14438442312}$$ CM no Rank $0$ Torsion structure $$\Z/{2}\Z$$

# Related objects

Show commands: Magma / Pari/GP / SageMath

## Minimal Weierstrass equation

sage: E = EllipticCurve([0, 0, 0, -19164684, -17069386768])

gp: E = ellinit([0, 0, 0, -19164684, -17069386768])

magma: E := EllipticCurve([0, 0, 0, -19164684, -17069386768]);

$$y^2=x^3-19164684x-17069386768$$

## Mordell-Weil group structure

$$\Z/{2}\Z$$

## Torsion generators

sage: E.torsion_subgroup().gens()

gp: elltors(E)

magma: TorsionSubgroup(E);

$$\left(-3836, 0\right)$$

## Integral points

sage: E.integral_points()

magma: IntegralPoints(E);

$$\left(-3836, 0\right)$$

## Invariants

 sage: E.conductor().factor()  gp: ellglobalred(E)[1]  magma: Conductor(E); Conductor: $$479808$$ = $$2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 17$$ sage: E.discriminant().factor()  gp: E.disc  magma: Discriminant(E); Discriminant: $$324620567283633160716288$$ = $$2^{21} \cdot 3^{8} \cdot 7^{10} \cdot 17^{4}$$ sage: E.j_invariant().factor()  gp: E.j  magma: jInvariant(E); j-invariant: $$\frac{34623662831857}{14438442312}$$ = $$2^{-3} \cdot 3^{-2} \cdot 7^{-4} \cdot 11^{3} \cdot 17^{-4} \cdot 2963^{3}$$ Endomorphism ring: $$\Z$$ Geometric endomorphism ring: $$\Z$$ (no potential complex multiplication) Sato-Tate group: $\mathrm{SU}(2)$ Faltings height: $$3.2085318601742915259032193331\dots$$ Stable Faltings height: $$0.64654987047266206352707216073\dots$$

## BSD invariants

 sage: E.rank()  magma: Rank(E); Analytic rank: $$0$$ sage: E.regulator()  magma: Regulator(E); Regulator: $$1$$ sage: E.period_lattice().omega()  gp: E.omega[1]  magma: RealPeriod(E); Real period: $$0.074874632777645824310996552168\dots$$ sage: E.tamagawa_numbers()  gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]  magma: TamagawaNumbers(E); Tamagawa product: $$64$$  = $$2\cdot2\cdot2^{2}\cdot2^{2}$$ sage: E.torsion_order()  gp: elltors(E)[1]  magma: Order(TorsionSubgroup(E)); Torsion order: $$2$$ sage: E.sha().an_numerical()  magma: MordellWeilShaInformation(E); Analytic order of Ш: $$1$$ (exact)

## Modular invariants

Modular form 479808.2.a.nz

sage: E.q_eigenform(20)

gp: xy = elltaniyama(E);

gp: x*deriv(xy[1])/(2*xy[2]+E.a1*xy[1]+E.a3)

magma: ModularForm(E);

$$q + 2q^{5} - 6q^{13} + q^{17} + O(q^{20})$$

 sage: E.modular_degree()  magma: ModularDegree(E); Modular degree: 56623104 $$\Gamma_0(N)$$-optimal: no Manin constant: 1 (conditional*)
* The Manin constant is correct provided that curve 479808.nz4 is optimal.

#### Special L-value

sage: r = E.rank();

sage: E.lseries().dokchitser().derivative(1,r)/r.factorial()

gp: ar = ellanalyticrank(E);

gp: ar[2]/factorial(ar[1])

magma: Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);

$$L(E,1)$$ ≈ $$1.1979941244423331889759448346934993186$$

## Local data

This elliptic curve is not semistable. There are 4 primes of bad reduction:

sage: E.local_data()

gp: ellglobalred(E)[5]

magma: [LocalInformation(E,p) : p in BadPrimes(E)];

prime Tamagawa number Kodaira symbol Reduction type Root number ord($$N$$) ord($$\Delta$$) ord$$(j)_{-}$$
$$2$$ $$2$$ $$I_{11}^{*}$$ Additive 1 6 21 3
$$3$$ $$2$$ $$I_2^{*}$$ Additive -1 2 8 2
$$7$$ $$4$$ $$I_4^{*}$$ Additive -1 2 10 4
$$17$$ $$4$$ $$I_{4}$$ Split multiplicative -1 1 4 4

## Galois representations

The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X44.

This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 0 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 3 & 0 \\ 0 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right)$ and has index 12.

sage: rho = E.galois_representation();

sage: [rho.image_type(p) for p in rho.non_surjective()]

magma: [GaloisRepresentation(E,p): p in PrimesUpTo(20)];

The mod $$p$$ Galois representation has maximal image $$\GL(2,\F_p)$$ for all primes $$p$$ except those listed.

prime Image of Galois representation
$$2$$ B

## $p$-adic data

### $p$-adic regulators

sage: [E.padic_regulator(p) for p in primes(5,20) if E.conductor().valuation(p)<2]

All $$p$$-adic regulators are identically $$1$$ since the rank is $$0$$.

No Iwasawa invariant data is available for this curve.

## Isogenies

This curve has non-trivial cyclic isogenies of degree $$d$$ for $$d=$$ 2 and 4.
Its isogeny class 479808.nz consists of 3 curves linked by isogenies of degrees dividing 4.