Minimal Weierstrass equation
\(y^2=x^3-2560594764x-12533759058800\)
Mordell-Weil group structure
\(\Z\times \Z/{2}\Z \times \Z/{2}\Z\)
Infinite order Mordell-Weil generator and height
\(P\) | = | \( \left(-\frac{6286784898392387511360868}{135812517252222543121}, \frac{4129391899021541365959549483259132560}{1582740437283346339762538617081}\right) \) |
\(\hat{h}(P)\) | ≈ | $51.509283049752786219389613506$ |
Torsion generators
\( \left(-4942, 0\right) \), \( \left(52892, 0\right) \)
Integral points
\( \left(-47950, 0\right) \), \( \left(-4942, 0\right) \), \( \left(52892, 0\right) \)
Invariants
sage: E.conductor().factor()
gp: ellglobalred(E)[1]
magma: Conductor(E);
|
|||
Conductor: | \( 479808 \) | = | \(2^{6} \cdot 3^{2} \cdot 7^{2} \cdot 17\) |
sage: E.discriminant().factor()
gp: E.disc
magma: Discriminant(E);
|
|||
Discriminant: | \(1006625294018868876956575727616 \) | = | \(2^{30} \cdot 3^{14} \cdot 7^{14} \cdot 17^{2} \) |
sage: E.j_invariant().factor()
gp: E.j
magma: jInvariant(E);
|
|||
j-invariant: | \( \frac{82582985847542515777}{44772582831427584} \) | = | \(2^{-12} \cdot 3^{-8} \cdot 7^{-8} \cdot 13^{3} \cdot 17^{-2} \cdot 457^{3} \cdot 733^{3}\) |
Endomorphism ring: | \(\Z\) | ||
Geometric endomorphism ring: | \(\Z\) | (no potential complex multiplication) | |
Sato-Tate group: | $\mathrm{SU}(2)$ |
BSD invariants
sage: E.rank()
magma: Rank(E);
|
|||
Analytic rank: | \(1\) | ||
sage: E.regulator()
magma: Regulator(E);
|
|||
Regulator: | \(51.509283049752786219389613506\) | ||
sage: E.period_lattice().omega()
gp: E.omega[1]
magma: RealPeriod(E);
|
|||
Real period: | \(0.022627173936815808722729652090\) | ||
sage: E.tamagawa_numbers()
gp: gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma: TamagawaNumbers(E);
|
|||
Tamagawa product: | \( 128 \) = \( 2^{2}\cdot2^{2}\cdot2^{2}\cdot2 \) | ||
sage: E.torsion_order()
gp: elltors(E)[1]
magma: Order(TorsionSubgroup(E));
|
|||
Torsion order: | \(4\) | ||
sage: E.sha().an_numerical()
magma: MordellWeilShaInformation(E);
|
|||
Analytic order of Ш: | \(1\) (exact) |
Modular invariants
Modular form 479808.2.a.ni
For more coefficients, see the Downloads section to the right.
sage: E.modular_degree()
magma: ModularDegree(E);
|
|||
Modular degree: | 566231040 | ||
\( \Gamma_0(N) \)-optimal: | unknown* (one of 4 curves in this isogeny class which might be optimal) | ||
Manin constant: | 1 (conditional*) |
Special L-value
\( L'(E,1) \) ≈ \( 9.3240760554194764640023326361805245781 \)
Local data
This elliptic curve is semistable. There are 4 primes of bad reduction:
prime | Tamagawa number | Kodaira symbol | Reduction type | Root number | ord(\(N\)) | ord(\(\Delta\)) | ord\((j)_{-}\) |
---|---|---|---|---|---|---|---|
\(2\) | \(4\) | \(I_{20}^{*}\) | Additive | -1 | 6 | 30 | 12 |
\(3\) | \(4\) | \(I_8^{*}\) | Additive | -1 | 2 | 14 | 8 |
\(7\) | \(4\) | \(I_8^{*}\) | Additive | -1 | 2 | 14 | 8 |
\(17\) | \(2\) | \(I_{2}\) | Split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The image of the 2-adic representation attached to this elliptic curve is the subgroup of $\GL(2,\Z_2)$ with Rouse label X188.
This subgroup is the pull-back of the subgroup of $\GL(2,\Z_2/2^3\Z_2)$ generated by $\left(\begin{array}{rr} 3 & 6 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right),\left(\begin{array}{rr} 5 & 2 \\ 0 & 5 \end{array}\right),\left(\begin{array}{rr} 7 & 0 \\ 4 & 3 \end{array}\right)$ and has index 48.
The mod \( p \) Galois representation has maximal image \(\GL(2,\F_p)\) for all primes \( p \) except those listed.
prime | Image of Galois representation |
---|---|
\(2\) | Cs |
$p$-adic data
$p$-adic regulators
\(p\)-adic regulators are not yet computed for curves that are not \(\Gamma_0\)-optimal.
No Iwasawa invariant data is available for this curve.
Isogenies
This curve has non-trivial cyclic isogenies of degree \(d\) for \(d=\)
2 and 4.
Its isogeny class 479808.ni
consists of 3 curves linked by isogenies of
degrees dividing 8.