Show commands:
SageMath
E = EllipticCurve("e1")
E.isogeny_class()
Elliptic curves in class 4788.e
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
4788.e1 | 4788f2 | \([0, 0, 0, -279, -1458]\) | \(12869712/2527\) | \(471598848\) | \([2]\) | \(1920\) | \(0.38093\) | |
4788.e2 | 4788f1 | \([0, 0, 0, 36, -135]\) | \(442368/931\) | \(-10859184\) | \([2]\) | \(960\) | \(0.034354\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 4788.e have rank \(1\).
Complex multiplication
The elliptic curves in class 4788.e do not have complex multiplication.Modular form 4788.2.a.e
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.