Properties

Label 4788.d
Number of curves $2$
Conductor $4788$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("d1")
 
E.isogeny_class()
 

Elliptic curves in class 4788.d

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4788.d1 4788c2 \([0, 0, 0, -44679, 3634990]\) \(52852623679312/8379\) \(1563722496\) \([2]\) \(6144\) \(1.1675\)  
4788.d2 4788c1 \([0, 0, 0, -2784, 57157]\) \(-204589760512/2600283\) \(-30329700912\) \([2]\) \(3072\) \(0.82090\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4788.d have rank \(0\).

Complex multiplication

The elliptic curves in class 4788.d do not have complex multiplication.

Modular form 4788.2.a.d

sage: E.q_eigenform(10)
 
\(q + 2 q^{5} - q^{7} + 2 q^{11} + 2 q^{13} - 2 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.