sage:E = EllipticCurve("c1")
E.isogeny_class()
sage:E.rank()
The elliptic curves in class 4788.c have
rank 0.
|
Bad L-factors: |
Prime |
L-Factor |
2 | 1 |
3 | 1 |
7 | 1+T |
19 | 1−T |
|
|
Good L-factors: |
Prime |
L-Factor |
Isogeny Class over Fp |
5 |
1+5T2 |
1.5.a
|
11 |
1−2T+11T2 |
1.11.ac
|
13 |
1−6T+13T2 |
1.13.ag
|
17 |
1−8T+17T2 |
1.17.ai
|
23 |
1−2T+23T2 |
1.23.ac
|
29 |
1+6T+29T2 |
1.29.g
|
⋯ | ⋯ | ⋯ |
|
|
See L-function page for more information |
The elliptic curves in class 4788.c do not have complex multiplication.
sage:E.q_eigenform(10)
sage:E.isogeny_class().matrix()
The i,j entry is the smallest degree of a cyclic isogeny between the i-th and j-th curve in the isogeny class, in the LMFDB numbering.
(1221)
sage:E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.
Elliptic curves in class 4788.c
sage:E.isogeny_class().curves
LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
4788.c1 |
4788b2 |
[0,0,0,−13215,410006] |
1367595682000/402300927 |
75079008200448 |
[2] |
13824 |
1.3683
|
|
4788.c2 |
4788b1 |
[0,0,0,2220,42653] |
103737344000/127413867 |
−1486155344688 |
[2] |
6912 |
1.0217
|
Γ0(N)-optimal |