Properties

Label 4788.b
Number of curves $2$
Conductor $4788$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("b1")
 
E.isogeny_class()
 

Elliptic curves in class 4788.b

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
4788.b1 4788a2 \([0, 0, 0, -114735, 14783078]\) \(895043160898000/12086562663\) \(2255642670419712\) \([2]\) \(21504\) \(1.7526\)  
4788.b2 4788a1 \([0, 0, 0, -1020, 614189]\) \(-10061824000/13965589323\) \(-162894633863472\) \([2]\) \(10752\) \(1.4060\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 4788.b have rank \(1\).

Complex multiplication

The elliptic curves in class 4788.b do not have complex multiplication.

Modular form 4788.2.a.b

sage: E.q_eigenform(10)
 
\(q - q^{7} - 2 q^{11} + 2 q^{13} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.